Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isolated Polymer Chains

Light scattering teclmiques play an important role in polymer characterization. In very dilute solution, where tire polymer chains are isolated from one anotlier, tire inverse of tire scattering function S (q) can be expressed in tire limit of vanishing scattering vector > 0 as 1121... [Pg.2518]

In dilute solutions, tire polymer chains are isolated from one anotlier and only interact during brief encounters. Witli increasing polymer concentration, a point is reached where tire chains start to overlap, tliis point referred to as... [Pg.2521]

Koutsos V, van der Vegte E W, Grim PCM and Hadziioannou G Isolated polymer chains via mixed self-assembled monolayers morphology and friction studied by scanning force microscopy Macromolecules 116-23... [Pg.2641]

To isolate polymer chains from one another, we consider a solution which is sufficiently dilute that the domains of the individual polymer molecules are well separated from each other. For the present, we assume the solvent has no influence on the polymer but merely supports the molecule. In fact, this is not generally the case, although it can be achieved by proper choice of solvent or temperature. [Pg.48]

To obtain isolated polymer chains, a solvent must be present. The solvent might be selectively excluded or imbibed by the coil, depending on the free energy of interaction, and thereby perturb the coil dimensions. [Pg.55]

The polymers exist in saline solution as tightly coiled chains and are readily adsorbed owing to relatively low solubiUty in hard water. Subsequent injection of soft, low salinity water uncoils the adsorbed polymer chains increasing water viscosity and reducing rock permeabiUty. This technology could also be used to reduce the permeabiUty of thief 2ones adjacent to injection wells. However, mechanical isolation of these 2ones may be necessary for cost-effective treatments. [Pg.191]

Physical and Chemical Properties. The reaction of urea and formaldehyde forms a white soHd. The solubihty varies with the methylene urea polymer chain length longer-chain, higher molecular-weight UF polymers are less water-soluble than short-chain polymers. Physical properties of the methylene urea polymers which have been isolated are compared to urea in Table 1. [Pg.130]

The terminal R groups can be aromatic or aliphatic. Typically, they are derivatives of monohydric phenoHc compounds including phenol and alkylated phenols, eg, /-butylphenol. In iaterfacial polymerization, bisphenol A and a monofunctional terminator are dissolved in aqueous caustic. Methylene chloride containing a phase-transfer catalyst is added. The two-phase system is stirred and phosgene is added. The bisphenol A salt reacts with the phosgene at the interface of the two solutions and the polymer "grows" into the methylene chloride. The sodium chloride by-product enters the aqueous phase. Chain length is controlled by the amount of monohydric terminator. The methylene chloride—polymer solution is separated from the aqueous brine-laden by-products. The facile separation of a pure polymer solution is the key to the interfacial process. The methylene chloride solvent is removed, and the polymer is isolated in the form of pellets, powder, or slurries. [Pg.270]

Finally, we want to describe two examples of those isolated polymer chains in a sea of solvent molecules. Polymer chains relax considerably faster in a low-molecular-weight solvent than in melts or glasses. Yet it is still almost impossible to study the conformational relaxation of a polymer chain in solvent using atomistic simulations. However, in many cases it is not the polymer dynamics that is of interest but the structure and dynamics of the solvent around the chain. Often, the first and maybe second solvation shells dominate the solvation. Two recent examples of aqueous and non-aqueous polymer solutions should illustrate this poly(ethylene oxide) (PEO) [31]... [Pg.492]

Poly[2,5-dialkoxy-l,4-phenylene) vinylenejs with long solubilizing alkoxy chains dissolve in conventional organic solvents such as chloroform, toluene, or tetrahydrofuran [21, 28, 32-36]. Their emission and absorption spectra are red-shifted relative to PPV itself, and the polymers fluorescence and electroluminescence quantum yields are greater than parent PPV. This benefit may be a consequence of the long alkyl chains isolating the polymer chains from each other. [Pg.333]

An affinity sorbent based on WPA-PG carrying immobilized human IgG was applied to the isolation of the first component of the complement (Cl) from human serum and for its separation into subcomponents Clr, Cls and Clq by the one-step procedure [126,127]. Cl was quantitatively bound to the sorbent at 0 °C. The activities of subcomponents Clq and Clr2r2 in the unbound part of the serum were found to be 0.8% and 3.3% of the initial activities in serum. This fraction, therefore, could be used as a R1 reagent for determining the hemolytic activity of Cl. Apparently, the neighboring macromolecules of immobilized IgG resemble to some extent an immune complex, whereas Cl formation is facilitated due to the mobility of polymer chains with the attached IgG macromolecules (Cl is usually dissociated in serum by 30%). After activation of bound Cl by heating (30 °C, 40 min) the activated subcomponent Clr is eluted from the sorbent. Stepwise elution with 0.05 mol/1 EDTA at pH 7.4 or with 0.05 mol/1 EDTA + 1 mol/1 NaCl at pH 8.5 results in a selective and quantitative elution of the activated subcomponent Cls and subcomponent Clq. [Pg.171]

In the propagation centers of chromium oxide catalysts as well as in other catalysts of olefin polymerization the growth of a polymer chain proceeds as olefin insertion into the transition metal-carbon tr-bond. Krauss (70) stated that he succeeded in isolating, in methanol solution from the... [Pg.177]

In the semi-dilute regime, the rate of shear degradation was found to decrease with the polymer concentration [132, 170]. By extrapolation to the dilute regime, it is frequently argued that chain scission should be nonexistent in the absence of entanglements under laminar conditions. No definite proof for this statement has been reported yet and the problem of isolated polymer chain degradation in simple shear flow remains open to further investigation. [Pg.168]

Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed. Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed.
To obtain the polyurethanes, typically a prepolymer was first prepared by reacting the diisocyanate with various diols in dimethylformamide or dimethylacetamide in a two to one molar ratio at 100-110°C for two hours under nitrogen atmosphere. A solution of chain extenders, such as BEP, was then added to the prepolymer reaction mixture and further reacted another three hours. The polymer was isolated by quenching the reaction mixture in cold water. Fine white powder was obtained with a typical yield of around 90%. [Pg.144]

If we were to have an isolated polymer chain with a single nuclear spin attached to each segment (the marked chain) crosslinked into an unmarked network, the second moment of the NMR line of that spin species would carry information relating to the separation of chain segments, and to their relative orientation with respect to the field direction. If the network were to be subjected to a bulk deformation, these geometrical parameters would be altered, and hence we would expect a corresponding change in the value of the experimentally measured... [Pg.281]

The above considerations apply to isolated polymer chains in solution, i.e. at very low polymer concentrations or volume fractions, < >p (i.e. in the limit < >p - 0). As p increases, interchain interactions becom important. Indeed, at a critical polymer concentration, interchain overlap begins, and beyond a second critical concentration, the chains are so overlapped... [Pg.6]

Based on Chien s research results, Collins et al. modified the basic structure of the catalysts and also achieved elastic material [8,18,19]. In both cases the elastic properties of the polymers are justified in a block structure with isotactic and atactic sequences. In 1999 Rieger et al. presented a couple of asymmetric, highly active metallocene catalysts, e.g., the dual-side catalyst rac-[l-(9-r 5-fluorenyl)-2-(5,6-cyclo-penta-2-methyl-l-q5-indenyl)ethane]zirconium dichloride (Fig. 3). These catalysts allowed building of isolated stereoerrors in the polymer chain to control the tacticity and therefore the material properties of the polymers [9],... [Pg.51]


See other pages where Isolated Polymer Chains is mentioned: [Pg.191]    [Pg.747]    [Pg.191]    [Pg.747]    [Pg.2528]    [Pg.444]    [Pg.43]    [Pg.394]    [Pg.296]    [Pg.510]    [Pg.449]    [Pg.543]    [Pg.497]    [Pg.76]    [Pg.115]    [Pg.385]    [Pg.391]    [Pg.506]    [Pg.74]    [Pg.77]    [Pg.130]    [Pg.6]    [Pg.587]    [Pg.343]    [Pg.31]    [Pg.98]    [Pg.921]    [Pg.72]    [Pg.31]    [Pg.492]    [Pg.688]    [Pg.693]    [Pg.360]    [Pg.67]    [Pg.183]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 , Pg.6 , Pg.7 , Pg.8 ]




SEARCH



Diffusion of Isolated Polymer Chains in Dilute Solutions

Internal energy and specific heat of an isolated polymer chain

Isolated chains

Polymers, isolation

© 2024 chempedia.info