Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer dispersions, preparation

The colloidal stability of polymer dispersion prepared by the emulsion copolymerization of R-(EO)n-MA was observed to increase with increasing EO number in the macromonomer [42, 96]. Thus C12-(EO)9-MA did not produce stable polymer latexes, i.e., the coagulum was observed during polymerization. This monomer, however, was efficient in the emulsion copolymerization with BzMA (see below). The C12-(EO)20-MA, however, appears to have the most suitable hydrophilic-hydrophobic balance to make stable emulsions. The relative reactivity of macromonomer slightly decreases with increasing EO number in macromonomer. The most hydrophilic macromonomer with co-methyl terminal, Cr(EO)39-MA, could not disperse the monomer so that the styrene droplets coexisted during polymerization. The maximum rate of polymerization was observed at low conversions and decreased with increasing conversion. The decrease in the rate may be attributed to the decrease of monomer content in the particles (Table 2). In the Cr(EO)39-MA/St system the macromonomer is soluble in water and styrene is located in the monomer droplets. Under such conditions the polymerization in St monomer droplets may contribute to the increase in r2 values. [Pg.42]

Osmond, D. W. J., and Waite, F. A., The theoretical basis for the steric stabilization of polymer dispersions prepared in organic media, in Dispersion Polymerization in Organic Media (K. E. J. Barrett, ed.), Wiley and Sons, New York, 1975, pp. 9-44. [Pg.213]

The equation can be extended to soap micelles, emulsions, and polymer dispersions prepared with a compatilibizer. [Pg.447]

Osmond, DWJ, Wagstaff, I. Properties of polymer dispersions prepared in organic liquids. In Barrett KEJ, editor. Dispersion Polymerization in Organic Media. Chichester John WUey Sons 1975. p 243-271. [Pg.77]

Nonaqueous Dispersion Polymerization. Nonaqueous dispersion polymers are prepared by polymerizing a methacryhc monomer dissolved in an organic solvent to form an insoluble polymer in the presence of an amphipathic graft or block copolymer. This graft or block copolymer, commonly called a stabilizer, lends coUoidal stabiUty to the insoluble polymer. Particle sizes in the range of 0.1—1.0 pm were typical in earlier studies (70), however particles up to 15 pm have been reported (71). [Pg.268]

Almost all synthetic binders are prepared by an emulsion polymerization process and are suppHed as latexes which consist of 48—52 wt % polymer dispersed in water (101). The largest-volume binder is styrene—butadiene copolymer [9003-55-8] (SBR) latex. Most SBRlatexes are carboxylated, ie, they contain copolymerized acidic monomers. Other latex binders are based on poly(vinyl acetate) [9003-20-7] and on polymers of acrylate esters. Poly(vinyl alcohol) is a water-soluble, synthetic biader which is prepared by the hydrolysis of poly(viayl acetate) (see Latex technology Vinyl polymers). [Pg.22]

Suspension polymerization of water-insoluble monomers (e.g., styrene and divinylbenzene) involves the formation of an oil droplet suspension of the monomer in water with direct conversions of individual monomer droplets into the corresponding polymer beads. Preparation of beaded polymers from water-soluble monomers (e.g., acrylamide) is similar, except that an aqueous solution of monomers is dispersed in oil to form a water-in-oil (w/o) droplet suspension. Subsequent polymerization of the monomer droplets produces the corresponding swollen hydrophilic polyacrylamide beads. These processes are often referred to as inverse suspension polymerization. [Pg.4]

Salts of alkyl phosphates and types of other surfactants used as emulsifiers and dispersing agents in polymer dispersions are discussed with respect to the preparation of polymer dispersions for use in the manufactoring and finishing of textiles. Seven examples are presented to demonstrate the significance of surfactants on the properties, e.g., sedimentation, wetting behavior, hydrophilic characteristics, foaming behavior, metal adhesion, and viscosity, of polymer dispersions used in the textile industry [239]. [Pg.605]

An aqueous colloidal polymeric dispersion by definition is a two-phase system comprised of a disperse phase and a dispersion medium. The disperse phase consists of spherical polymer particles, usually with an average diameter of 200-300 nm. According to their method of preparation, aqueous colloidal polymer dispersions can be divided into two categories (true) latices and pseudolatices. True latices are prepared by controlled polymerization of emulsified monomer droplets in aqueous solutions, whereas pseudolatices are prepared starting from already polymerized macromolecules using different emulsification techniques. [Pg.274]

The interfacial properties of chain-like molecules in many polymeric and colloidal systems are dependent on the conformation of the chains adsorbed at the interface (.1). Chains adsorbed at the solid-liquid interface may be produced by anchoring diblock copolymers to particles in a polymer dispersion. Such dispersions are conveniently prepared by polymerizing in the presence of a preformed AB diblock copolymer a monomer dissolved in a diluent which is a precipitant for the polymer. The A block which is... [Pg.267]

Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

The question whether the intramolecularly crosslinked microparticles of non-aqueous polymer dispersions are really microgels is also justified, considering non-aqueous dispersions prepared from acrylic copolymers and melamine/formaldehyde crosslinker with particle sizes of about 300 nm. [45, 343]. In any case, these crosslinked polymeric microparticles are useful constituents of high-solids coatings, imparting a yield stress to those solutions which probably involves attractive forces between the microparticles. [Pg.220]

Polymer-dispersed liquid crystals (PDLCs) are made up of nematic liquid crystals dispersed in a solid continuous polymer matrix. These are prepared by mixing a reactive monomer into a non-polymerisable LC medium and then polymerising the reactive monomer to create a polymer matrix, at the same time capturing the LCs as dispersed droplets, greater than 1 pm in diameter, i.e. the wavelength of visible light.3 -33... [Pg.321]

Holographic optical elements can also be made by the preparation of polymer-dispersed liquid crystals using twin lasers in transmission holographic photopolymerisation (see section 5.4.2). They have also been made using photorefractive composites of polymer dispersed liquid crystals (see section 5.6.3). [Pg.321]

Seed polymerization using a polystyrene latex was used by Gaschler et al. (3) to prepare aqueous styrol-butadiene polymer dispersions. [Pg.470]

Tachibana T, Nakamura A. A method for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers dispersion of beta-carotene by polyvinylpyrrolidone. Kolloid-Z Polym 1965 203 130-133. [Pg.194]

The MABS copolymers are prepared by dissolving or dispersing polybuiadiene rubber in a methyl methacrylate—acrylonitrile—styrene monomer mixture. MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene rubber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid polytvinyl chloride). [Pg.990]

The stable polymer dispersions with small-sized polymer particles of diameter >60 nm were prepared by dispersion copolymerization of PEO-MA macromonomer with styrene, 2-ethylhexyl acrylate, acrylic and methacrylic acids, and butadiene at 60 °C [79]. The particle size was reported to decrease with increasing macromonomer fraction in the comonomer feed. Besides, it varied with the type of the classical monomer as a comonomer. Tg of polymer product was found to be a function of the copolymer composition, the weight ratio macromonomer/monomer, and monomer type and varied from 50.6 to 220.4 °C. [Pg.33]


See other pages where Polymer dispersions, preparation is mentioned: [Pg.56]    [Pg.160]    [Pg.202]    [Pg.305]    [Pg.53]    [Pg.390]    [Pg.56]    [Pg.160]    [Pg.202]    [Pg.305]    [Pg.53]    [Pg.390]    [Pg.481]    [Pg.39]    [Pg.710]    [Pg.95]    [Pg.1061]    [Pg.117]    [Pg.51]    [Pg.331]    [Pg.269]    [Pg.282]    [Pg.282]    [Pg.290]    [Pg.46]    [Pg.203]    [Pg.202]    [Pg.85]    [Pg.431]    [Pg.117]    [Pg.53]    [Pg.39]    [Pg.52]    [Pg.7]    [Pg.49]    [Pg.516]    [Pg.628]    [Pg.191]   
See also in sourсe #XX -- [ Pg.396 ]




SEARCH



Dispersant, polymers

Polymer Dispersants

Polymer dispersed

Polymer preparation

Polymers dispersion

© 2024 chempedia.info