Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyme poly

Bloor D M, Wan-Yunis W M Z, Wan-Badhi W A, Li Y, Hoizwarth J F and Wyn-Jones E 1995 Equilibrium and kinetio studies assooiated with the binding of sodium dodeoyl sulfate to the polymers poly(propylene oxide) and ethyl-(hydroxyethyl)oellulose Langmuir 3395-400... [Pg.2608]

The conducting polymer poly(sulfur nitride) is unusual in that it is crystalline, consisting of chains of sulfur and nitrogen packed in parallel. [Pg.241]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

Polymer Ferroelectrics. In 1969, it was found that strong piezoelectric effects could be induced in the polymer poly(vinyhdene fluoride) (known as PVD2 or PVDF) by apphcation of an electric field (103). Pyroelectricity, with pyroelectric figures of merit comparable to crystalline pyroelectric detectors (104,105) of PVF2 films polarized this way, was discovered two year later (106.)... [Pg.209]

Until 1990 the EPA maintained a Hst of chemicals suitable for potable water treatment ia the United States. Siace then the entire question of certification and standards has been turned over to a group of organi2ations headed by the National Sanitation Eoundation, which has issued voluntary standards. As of January 1992, standards had been issued for most of the principal inorganic products, but only for two polymers, poly(DADMAC) and Epi-DMA (epichl orohydrin dimethyl amine) polymers (78). Certifications for commercial products meeting specified standards are issued by the National Sanitation Eoundation, Underwriter Laboratories, and Risk Eocus/Versar (79). [Pg.37]

Vinyl Acetate—Ethylene Copolymers. In these random copolymers, the ratio of ethylene to vinyl acetate (EVA) is varied from 30—60%. As the vinyl acetate content increases, the oil and heat resistance increases. With higher ethylene content the physical strength, tensile, and tear increases. The polymers are cured with peroxide. The main properties of these elastomers include heat resistance, moderate oil and solvent resistance, low compression set, good weather resistance, high damping, exceUent o2one resistance, and they can be easily colored (see Vinyl polymers, poly(VINYL acetate)). [Pg.234]

Redox initiator systems are normally used in the emulsion polymerization of VDC to develop high rates at low temperatures. Reactions must be carried out below - 80° C to prevent degradation of the polymer. Poly(vinyHdene chloride) in emulsion is also attacked by aqueous base. Therefore, reactions should be carried out at low pH. [Pg.429]

VINYLIDENE POLYMERS, POLY(VINYLIDENE FLUORIDE) ELASTOMERS. [Pg.447]

The poly(vinyl acetal) prepared from acetaldehyde was developed in the early 1940s by Shawinigan Chemicals, Ltd., of Canada and sold under the trade name Alvar. Early uses included injection-molded articles, coatings for paper and textiles, and replacement for shellac. Production peaked in the early 1950s and then decreased as a result of competition from less expensive resins such as poly(vinyl chloride) (see Vinyl polymers, poly(vinyl chloride)). [Pg.449]

The excellent chemical resistance and physical properties of PVA resins have resulted in broad industrial use. The polymer is an excellent adhesive and possesses solvent-, oil-, and grease-resistant properties matched by few other polymers. Poly(vinyl alcohol) films exhibit high tensile strength, abrasion resistance, and oxygen barrier properties which, under dry conditions, are superior to those of any other known polymer. The polymer s low surface tension provides for excellent emulsification and protective coUoid properties. [Pg.475]

Plasticizers. Plasticizers are materials that soften and flexibilize inherently rigid, and even britde polymers. Organic esters are widely used as plasticizers in polymers (97,98). These esters include the benzoats, phthalates, terephthalates, and trimeUitates, and aUphatic dibasic acid esters. Eor example, triethylene glycol bis(2-ethylbutyrate) [95-08-9] is a plasticizer for poly(vinyl butyral) [63148-65-2] which is used in laminated safety glass (see Vinyl POLYMERS, poly(vinyl acetals)). Di(2-ethyUiexyl)phthalate [117-81-7] (DOP) is a preeminent plasticizer. Variation of acid and/or alcohol component(s) modifies the efficacy of the resultant ester as a plasticizer. In phthalate plasticizers, molecular sizes of the alcohol moiety can be varied from methyl to tridecyl to control permanence, compatibiUty, and efficiency branched (eg, 2-ethylhexyl, isodecyl) for rapid absorption and fusion linear (C6—Cll) for low temperature flexibiUty and low volatility and aromatic (benzyl) for solvating. Terephthalates are recognized for their migration resistance, and trimeUitates for their low volatility in plasticizer appHcations. [Pg.396]

In the early 1950s the fluoroacrylate polymers Poly-lF4 and Poly-2F4 (known initially as PolyFBA) and PolyFMFPA) were introduced. These materials had the structures given in Figure 13.7. These materials are also no longer of eommercial significance. [Pg.379]

The group in the Swiss Federal Institute of Technology [55] has fabricated a macroscale device by depositing the conducting polymer (poly(/j-phenylenevinylene)) on the MWCNT film (Fig. 16). They have observed the characteristic rectifying effect from the l-V curve, which suggests the CNTs inject holes efficiently into the polymer layer. However, due to the difficulty in... [Pg.178]

Beaded methacrylate polymers, poly(hydroxyethylmethacrylate), Spheron, Separon (29), and poly(glycidylmethacrylate), Eupergin (30,31), are studied extensively at the Czechoslovak Academy of Macromolecular Sciences. An addition to this type of support is poly(oxyethylene-dimethacrylate) (32). Heitz et al. (33) described the preparation of beaded poly(methylacrylates) cross-linked with ethanedimethacrylates. [Pg.9]

As an energetic polymer, poly(glycidyl azide) (PGA) mance solid propellant binder [63,64]. For this purpose,... [Pg.733]

S. V. Frolov, M. Ozaki, W. Gellermann, Z. V. Vardeny, K. Yoshino, Mirrorless lasing in conducting polymer poly(2,5-dioclyloxy-p-phenylencvinylcnc) films. Jpn. J. Appl. Phys. 1996, 35, L1371. [Pg.178]

Sloop and Lerner [132] showed that SEI formation can be affected by treatment of the cross-linked polymer, poly-[oxymeth-ylene oligo(oxyethylene)] (PEM) with an alkylating agent. Cross-linked films of PEM do not form a stable interface with lithium however, upon treatment with methyl iodide, / Ej stabilizes at 2000 Hem"1. Such an SEI is characterized by low conductivity, from 10 to 10 Q-Icm2, which is linear over the temperature range of 25-85 °C. [Pg.449]

The chemical adsorption of a relatively high molecular weight neutral polymer (poly(succinimide), M = 13000) on aminopropyl-Vydac 101 TP silica gel was applied by Alpert [47, 48] to prepare a reactive composite support for use in cation-exchange [47] and hydrophobic-interaction [48] chromatography of pro-... [Pg.150]

Recently, similar model compounds were synthesized by Shimidzu et al.2V>. Furthermore, Shimidzu et al.20 aimed at synthesizing other cationic polymers poly l-[3-(adenin-9-yl)propyl]-4-pyridinioethylene chloride, APVP, poly l-[2-(adenin-9-yl)ethyl]-iminoethylene halide, 10 (APEI), poly[ 1 -(2-thymin-l -yl)-iminoethylene halide], 11 (TPEI), poly[l-(uraeil-5-yl)-iminoethylene halide],... [Pg.140]

The authors found that the yield of 30-mer (a product with 5—6 linkages) was not much smaller than that of 10-mer or 12-mer. These facts indicate that the stability of the complex between the oligonucleotides and the complementary template is the most important factor in determining the extent of the condensation. The strong influences of template polymer (Poly C) are demonstrated in Fig. 9, in which the elution profile is shown of the polymerization products of (2 MeIp)6 in the presence of Poly C (B) and in their absence (A). [Pg.152]

Cationic polyelectrolytes containing imidazole groups have been investigated by some researchers. Morawetz et alU4 first found that a cationic polymer, poly (l-vinyl-3-ethylimidazolium iodide), 65 (PQMelm), enhanced the hydrolyses of the negatively charged esters, i. e. NABA and 4-acetoxy-3-nitrobenzenesulfonate 66 (NABS). At intermediate pH, a large catalytic effect was observed and this was... [Pg.163]


See other pages where Polyme poly is mentioned: [Pg.320]    [Pg.390]    [Pg.788]    [Pg.1055]    [Pg.118]    [Pg.246]    [Pg.523]    [Pg.407]    [Pg.148]    [Pg.228]    [Pg.23]    [Pg.538]    [Pg.6]    [Pg.132]    [Pg.396]    [Pg.585]    [Pg.478]    [Pg.335]    [Pg.63]    [Pg.413]    [Pg.5]    [Pg.14]    [Pg.133]    [Pg.497]    [Pg.288]    [Pg.339]    [Pg.342]    [Pg.570]    [Pg.919]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Poly polymers

© 2024 chempedia.info