Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene physical properties

Polyetiiylene (PE) is one of the lowest-cost polymers. There are various types of polyethylene denoted by their molecular weight. This ranges from low-density polyethylene (LDPE) through uTtrahigh-molecular-weight (UHMW) polyethylene. Physical properties, processability, and other characteristics of the polyethylene vary greatly with the molecular weight. [Pg.41]

An example of the dependence of polymer properties on catalyst activation temperature is shown in Table 5. Polymers of various MW were made with a Cr/silica catalyst activated at various temperatures. The polymers were then tested for environmental stress crack resistance (ESCR), a measure of their ability to resist chemical attack when polymer strips are placed under stress (bent). The test is conducted in the presence of hot surfactant, and the time to failure is monitored. Like most other polyethylene physical properties, ESCR is usually improved when the MW is increased. Therefore, comparisons of catalysts are usually made at similar melt indices (a surrogate for MW). A broader MW distribution... [Pg.188]

The identification of both short chain and long chain branches in polyethylene at concentrations of 1 per 10,000 carbon atoms has become feasible with the availability of improved probes and improved computer hardware/ software capabilities. Reviewed in this chapter are the methods and computations as well as the basic requirements for sound quantitative analyses namely, correct choice of solvent, a consideration of concentration effect on line widths and satisfying nuclear Overhauser effects and spin lattice relaxation time requirements. Finally, the NMR generated structural information is put to use in correlations with polyethylene physical properties and measurements of number average molecular weight. [Pg.131]

The development of the concepts of run number, average sequence lengths and triad distributions would be of little more than academic interest if they could not be usefully applied. The concept of run number is most valuable in a consideration of the effect of comonomer content versus branch length in affecting polyethylene density. The following section utilizes the run number in a correlation with a number of polyethylene physical properties. [Pg.143]

Although each production process yields ash that is essentially chemically equivalent, the various products differ ia physical properties and ia contaminants as shown ia Table 6. Hopper cars, pneumatic tmcks, supersacks, and multiwaH kraft bags with polyethylene liners are the usual shipping containers. [Pg.526]

The film tube is collapsed within a V-shaped frame of rollers and is nipped at the end of the frame to trap the air within the bubble. The nip roUs also draw the film away from the die. The draw rate is controlled to balance the physical properties with the transverse properties achieved by the blow draw ratio. The tube may be wound as such or may be sHt and wound as a single-film layer onto one or more roUs. The tube may also be direcdy processed into bags. The blown film method is used principally to produce polyethylene film. It has occasionally been used for polypropylene, poly(ethylene terephthalate), vinyls, nylon, and other polymers. [Pg.380]

Extmsion of polyethylene and some polypropylenes is usually through a circular die into a tubular form, which is cut and collapsed into flat film. Extmsion through a linear slot onto chilled rollers is called casting and is often used for polypropylene, polyester, and other resins. Cast, as well as some blown, films may be further heated and stretched in the machine or in transverse directions to orient the polymer within the film and improve physical properties such as tensile strength, stiffness, and low temperature resistance. [Pg.453]

Polyethylene. Traditional melt spun methods have not utilized polyethylene as the base polymer because the physical properties obtained have been lower compared to those obtained with polypropylene. Advances in polyethylene technology may result in the commercialization of new spunbonded stmctures having characteristics not attainable with polypropylene. Although fiber-grade polyethylene resin was announced in late 1986 (11,12), it has seen limited acceptance because of higher costs and continuing improvements in polypropylene resin technology (see Olefin POLYMERS, POLYETHYLENE). [Pg.163]

Chlorinated Polyethylene. Chlorinating polyethylene under pressure results in a polymer having a chlorine content varying from 25 to 42%. The polymer requires the incorporation of carbon black and minerals for achieving good physical properties. The polymers handle like conventional polymers and can be mixed and processed on conventional mbber equipment. [Pg.233]

Table 17. Physical Properties of a Multilayer Barrier Film and a Polyethylene Film ... Table 17. Physical Properties of a Multilayer Barrier Film and a Polyethylene Film ...
Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

Nearly all polymeric materials require the addition of antioxidants to retain physical properties and to ensure an adequate service life. The selection of an antioxidant or system of antioxidants is dependent upon the polymer and the anticipated end use. A product that will not be exposed to the elements for a long period of time such as polyethylene grocery bags does not need a long term stabilizer polyethylenes used to iasulate communication cable must be stabilized for many years of service. [Pg.228]

Ozonc-rcsjstant elastomers which have no unsaturation are an exceUent choice when their physical properties suit the appHcation, for example, polyacrylates, polysulfides, siHcones, polyesters, and chlorosulfonated polyethylene (38). Such polymers are also used where high ozone concentrations are encountered. Elastomers with pendant, but not backbone, unsaturation are likewise ozone-resistant. Elastomers of this type are the ethylene—propylene—diene (EPDM) mbbers, which possess a weathering resistance that is not dependent on environmentally sensitive stabilizers. Other elastomers, such as butyl mbber (HR) with low double-bond content, are fairly resistant to ozone. As unsaturation increases, ozone resistance decreases. Chloroprene mbber (CR) is also quite ozone-resistant. [Pg.238]

These conclusions are further suppo] ted by expected physical properties of dried film of chlorosulfonated polyethylene from the different types of ... [Pg.491]

In order to improve the physical properties of HDPE and LDPE, copolymers of ethylene and small amounts of other monomers such as higher olefins, ethyl acrylate, maleic anhydride, vinyl acetate, or acryUc acid are added to the polyethylene. Eor example, linear low density polyethylene (LLDPE), although linear, has a significant number of branches introduced by using comonomers such as 1-butene or 1-octene. The linearity provides strength, whereas branching provides toughness. [Pg.432]

The effect of these two parameters on mechanical and physical properties of polyethylene and polypropylene are shown in Tables 3.44 and 3.45. The copolymer grade is usually propylene with a little ethylene (5%), wliich considerably improves the impact strength while causing only a slight loss in stiffness. [Pg.105]

Weathering. This generally occurs as a result of the combined effect of water absorption and exposure to ultra-violet radiation (u-v). Absorption of water can have a plasticizing action on plastics which increases flexibility but ultimately (on elimination of the water) results in embrittlement, while u-v causes breakdown of the bonds in the polymer chain. The result is general deterioration of physical properties. A loss of colour or clarity (or both) may also occur. Absorption of water reduces dimensional stability of moulded articles. Most thermoplastics, in particular cellulose derivatives, are affected, and also polyethylene, PVC, and nylons. [Pg.27]

Nikitin LN (1982) Investigation of the structure and physical properties of Norplast and polyethylene/perlite based compositions, Candidate s thesis. VPI Voronezh... [Pg.65]

Polyethylene, because of its inertness and physical properties, is nearly ideal as a packaging material for food products. It is inert to most chemicals and, except for overheating (which can oxidize it) or irradiation (which can cross link the molecules), the chemical composition of polyethylene is difficult to change. There is one important property which it does lack—permeation resistance. [Pg.57]

In this review recent theoretical developments which enable quantitative measures of molecular orientation in polymers to be obtained from infra-red and Raman spectroscopy and nuclear magnetic resonance have been discussed in some detail. Although this is clearly a subject of some complexity, it has been possible to show that the systematic application of these techniques to polyethylene terephthalate and polytetramethylene terephthalate can provide unique information of considerable value. This information can be used on the one hand to gain an understanding of the mechanisms of deformation, and on the other to provide a structural understanding of physical properties, especially mechanical properties. [Pg.114]

TABLE 2.12 Physical Properties of Poly(ethylene terephthalate) (PET) and Polyethylene 2,6-naphthalate) (PEN) Polyester Fibers... [Pg.46]

Most commercial polymers are substantially linear. They have a single chain of mers that forms the backbone of the molecule. Side-chains can occur and can have a major affect on physical properties. An elemental analysis of any polyolefin, (e.g., polyethylene, polypropylene, poly(l-butene), etc.) gives the same empirical formula, CH2, and it is only the nature of the side-chains that distinguishes between the polyolefins. Polypropylene has methyl side-chains on every other carbon atom along the backbone. Side-chains at random locations are called branches. Branching and other polymer structures can be deduced using analytical techniques such as NMR. [Pg.469]

Akhtar has studied the morphology and physical properties of NR and high-density polyethylene blends prepared in Brabender plasticorder at 150°C at a rotor speed of 60 rpm [53]. Films were molded between two chromium plates at a pressure of 0.34 MPa. The films along with mold were... [Pg.339]

Akhtar, S. Morphology and Physical Properties of Thin Films of Thermoplastic Elastomers from Blends of Natural Ruhher and Polyethylene, Rubber Chem. Technol. 61, 599-583, 1988. [Pg.350]

Their physical properties are essentially those of the alkanes. It is the unsaturated linkages that dominate the chemistry and the main reaction is one of addition (e.g. hydrogen, halogen, and hydrogen halides) across the double bond to produce saturated compounds. This reactivity is utilized in the manufacture of long-chain polymers, e.g. polyethylene and polypropylene. [Pg.35]

For the most part, plastics are man-made since very few plcistlcs are natural, i.e.- nature-made. Natural plastics include large molecular-wei t proteins and similar molecules. Man-made plastics can be classified as either thermoplastic or thermosetting. Each class derives its physical properties from the effects of application of heat, the former becoming "plastic" (that is- it becomes soft and tends to flow) while the latter becomes less "plastic" and tends to remain in a softened state. This difference in change of state derives from the actual nature of the chemical bonds in the polymer. Thermoplastic polymers generally consist of molecules composed of many monomeric units. A good example is that of polyethylene where the monomeric unit is -(CH2-CH2)-. The molecule is linear... [Pg.403]

The chemical and physical properties of the polymers obtained by these alternate methods are identical, except insofar as they are affected by differences in molecular weight. In order to avoid the confusion which would result if classification of the products were to be based on the method of synthesis actually employed in each case, it has been proposed that the substance be referred to as a condensation polymer in such instances, irrespective of whether a condensation or an addition polymerization process was used in its preparation. The cyclic compound is after all a condensation product of one or more bifunctional compounds, and in this sense the linear polymer obtained from the cyclic intermediate can be regarded as the polymeric derivative of the bifunctional monomer(s). Furthermore, each of the polymers listed in Table III may be degraded to bifunctional monomers differing in composition from the structural unit, although such degradation of polyethylene oxide and the polythioether may be difficult. Apart from the demands of any particular definition, it is clearly desirable to include all of these substances among the condensation... [Pg.57]


See other pages where Polyethylene physical properties is mentioned: [Pg.271]    [Pg.387]    [Pg.350]    [Pg.408]    [Pg.209]    [Pg.259]    [Pg.233]    [Pg.528]    [Pg.490]    [Pg.979]    [Pg.74]    [Pg.271]    [Pg.1215]    [Pg.59]    [Pg.312]    [Pg.469]    [Pg.464]    [Pg.851]    [Pg.134]    [Pg.13]   


SEARCH



Physical properties of polyethylene

Polyethylene physical

Polyethylene physical properties influence

© 2024 chempedia.info