Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene parameter

Fig. 9.31 Plot of f against chain length x for indicated temperatures for linear polyethylene. Parameters used r = 145.5 °C, <7un = 100 cal mol and o-en = 4600 mol ( 136)... Fig. 9.31 Plot of f against chain length x for indicated temperatures for linear polyethylene. Parameters used r = 145.5 °C, <7un = 100 cal mol and o-en = 4600 mol ( 136)...
The conformational characteristics of PVF are the subject of several studies (53,65). The rotational isomeric state (RIS) model has been used to calculate mean square end-to-end distance, dipole moments, and conformational entropies. C-nmr chemical shifts are in agreement with these predictions (66). The stiffness parameter (5) has been calculated (67) using the relationship between chain stiffness and cross-sectional area (68). In comparison to polyethylene, PVF has greater chain stiffness which decreases melting entropy, ie, (AS ) = 8.58 J/(molK) [2.05 cal/(molK)] versus... [Pg.380]

SolubiHty parameters of 19.3, 16.2, and 16.2 (f /cm ) (7.9 (cal/cm ) ) have been determined for polyoxetane, po1y(3,3-dimethyl oxetane), and poly(3,3-diethyloxetane), respectively, by measuring solution viscosities (302). Heat capacities have been determined for POX and compared to those of other polyethers and polyethylene (303,304). The thermal decomposition behavior of poly[3,3-bis(ethoxymethyl)oxetane] has been examined (305). [Pg.368]

Plasticizers and Processing Aids. Petroleum-based oils are commonly used as plasticizers. Compound viscosity is reduced, and mixing, processing, and low temperature properties are improved. Air permeabihty is increased by adding extender oils. Plasticizers are selected for their compatibihty and low temperature properties. Butyl mbber has a solubihty parameter of ca 15.3 (f /cm ) [7.5 (cal/cm ) ], similar to paraffinic and naphthenic oils. Polybutenes, paraffin waxes, and low mol wt polyethylene can also be used as plasticizers (qv). Alkyl adipates and sebacates reduce the glass-transition temperature and improve low temperature properties. Process aids, eg, mineral mbber and Stmktol 40 ms, improve filler dispersion and cured adhesion to high unsaturated mbber substrates. [Pg.485]

Introduction of linear low density polyethylene in the 1970s and 1980s offered yet another design parameter, giving chlorosulfonated products with the advantages of linear types but with improved low temperature performance (8). [Pg.490]

The bulk viscosity control parameter for CSM, as with other elastomers, is molecular weight M and molecular-weight distribution (MWD). Mooney viscosity for CSM is determined by selection of the polyethylene precursor. [Pg.491]

There are thus no solvents at room temperature for polyethylene, polypropylene, poly-4 methylpent-l-ene, polyacetals and polytetrafluoroethylene. However, as the temperature is raised and approaches F , the FAS term becomes greater than AH and appropriate solvents become effective. Swelling will, however, occur in the amorphous zones of the polymer in the presence of solvents of similar solubility parameter, even at temperatures well below T. ... [Pg.84]

In the case of crystalline polymers better results are obtained using an amorphous density which can be extrapolated from data above the melting point, or from other sources. In the case of polyethylene the apparent amorphous density is in the range 0.84-0.86 at 25°C. This gives a calculated value of about 8.1 for the solubility parameter which is still slightly higher than observed values obtained by swelling experiments. [Pg.93]

Hence polyethylene will be more permeable to liquids of similar solubility parameter, e.g. hydrocarbons, than to liquids of different solubility parameter but of similar size. The permeabilities of a number of polymers to a number of gases are given the Table 5.77. ... [Pg.102]

Since polyethylene is a crystalline hydrocarbon polymer incapable of specific interaction and with a melting point of about 100°C, there are no solvents at room temperature. Low-density polymers will dissolve in benzene at about 60°C but the more crystalline high-density polymers only dissolve at temperatures some 20-30°C higher. Materials of similar solubility parameter and low molecular weight will, however, cause swelling, the more so in low-density polymers Table 10.5). [Pg.224]

Being a hydrocarbon with a solubility parameter of 18.6MPa - it is dissolved by a number of hydrocarbons with similar solubility parameters, such as benzene and toluene. The presence of a benzene ring results in polystyrene having greater reactivity than polyethylene. Characteristic reactions of a phenyl group such as chlorination, hydrogenation, nitration and sulphonation can all be performed with... [Pg.433]

Values of the interaction parameter, (j>, are given in brackets. C-PE is corona-treated polyethylene. [Pg.114]

The effect of these two parameters on mechanical and physical properties of polyethylene and polypropylene are shown in Tables 3.44 and 3.45. The copolymer grade is usually propylene with a little ethylene (5%), wliich considerably improves the impact strength while causing only a slight loss in stiffness. [Pg.105]

Shear degradation is another parameter that is very difficult to quantify and it is not fully understood. Several studies have been made on this subject (16-19) and the topic has been reviewed (20). We have found in our own work (21) that NBS 1476, a low-density polyethylene, is very susceptible to shear degradation in the GPC column and that the amount of degradation that will occur is very dependent on both flow rate and the particle size of the packing. [Pg.587]

The final step in the process of standardizing our columns was to try and maintain the high quality of columns from batch to batch of gel from the manufacturer. This was done by following the basic procedures outlined earlier for the initial column evaluation with two exceptions. First, we did not continue to use the valley-to-peak ratios or the peak separation parameters. We decided that the D20 values told us enough information. The second modification that we made was to address the issue of discontinuities in the gel pore sizes (18,19). To do this, we selected six different polyethylenes made via five different production processes. These samples are run every time we do an evaluation to look for breaks or discontinuities that might indicate the presence of a gel mismatch. Because the resins were made by several different processes, the presence of a discontinuity in several of these samples would be a strong indication of a problem. Table 21.5 shows the results for several column evaluations that have been performed on different batches of gel over a 10-year period. Table 21.5 shows how the columns made by Polymer Laboratories have improved continuously over this time period. Figure 21.2 shows an example of a discontinuity that was identified in one particular evaluation. These were not accepted and the manufacturer quickly fixed the problem. [Pg.592]

ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

The unfavorable effect of reduced MM of polyethylene on the complex of properties has also been reported in [322, 323] the parameter e is the most affected. From Table 10 one can see that this characteristic can be improved considerably... [Pg.47]

In [324] it was noted that in case of polyethylene-based PFCM it is the MM which is the parameter controlling the composite viscosity. For a fixed MM, the viscosity of the melt increases symbatically with the filling percentage by mass. The nature of the viscosity versus MM relationship is similar for both PFCM and mechanical mixtures, that is, in terms of rheology the two systems are practically identical. [Pg.48]

In [332] it was noted that the strength of samples cut out at different locations of an article made from filled thermoplastics by pressure molding may differ widely — which is due to the non uniform orientation of the polymer at different locations of the mold. The very high strength parameters of composites with PMF in molded specimens are obviously also due to orientation effects, while for standard mixed samples of similar composition (that is, a matrix which, apart from the filler, contains some superhigh molecular polyethylene imitating the PMF coats) the... [Pg.50]

To illustrate the use of the gas sorption mode , we show in Figure 7 results of the supercritical ethylene sorption in low-density polyethylene (12,16). As seen in Figure 7, the theory is capable of fitting the ethylene sorption data. In this instance, the data at three temperatures can be fit within experimental precision using interaction parameters (p o) of 3235 atm, 3178 atm, or 3101 atm at 126°C, 140 0, and 155 C, respectively. [Pg.195]

The algorithm we used for solvent/polydisperse polymer equilibria calls for only one solvent/polymer interaction parameter. The interaction parameter (pto) i ed in the algorithm can be determined from essentially any type of ethylene/polyethylene phase equilibrium data. Cloud-point data have been used (18). while Cheng (16) and Harmony ( ) have done so from gas sorption data. [Pg.199]

The simplest way to prepare a biocatalyst for use in organic solvents and, at the same time, to adjust key parameters, such as pH, is its lyophilization or precipitation from aqueous solutions. These preparations, however, can undergo substrate diffusion limitations or prevent enzyme-substrate interaction because of protein-protein stacking. Enzyme lyophilization in the presence of lyoprotectants (polyethylene glycol, various sugars), ligands, and salts have often yielded preparations that are markedly more active than those obtained in the absence of additives [19]. Besides that, the addition of these ligands can also affect enzyme selectivity as follows. [Pg.9]


See other pages where Polyethylene parameter is mentioned: [Pg.2827]    [Pg.2827]    [Pg.166]    [Pg.462]    [Pg.379]    [Pg.136]    [Pg.30]    [Pg.134]    [Pg.216]    [Pg.257]    [Pg.322]    [Pg.559]    [Pg.90]    [Pg.158]    [Pg.611]    [Pg.47]    [Pg.412]    [Pg.61]    [Pg.539]    [Pg.286]    [Pg.595]    [Pg.184]    [Pg.193]    [Pg.8]    [Pg.47]    [Pg.179]    [Pg.180]    [Pg.555]    [Pg.852]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Economic parameters for the production of polyethylene

Economic parameters of polyethylene production

Polyethylene fusion parameters

Polyethylene solubility parameter

Polyethylene temperature parameters

© 2024 chempedia.info