Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene-graft-polyacrylic

Research studies [160] conducted with static magnetic susceptibility and EPR spectroscopy methods have made it possible to define the distribution character of Cu(2 + ) ions fixed on polyethylene-graft-polyacrylic acid supports (PE-graft-PAA). [Pg.99]

Organic peroxides are used to initiate free-radical polymerization of ethylene, butadiene, styrene, vinyl chloride, vinyl acetate, and methyl methacrylate. They are also used to cure unsaturated polyesters, occasionally to cross-link thermoplastics such as polyethylene and polyacrylates, and increasingly for grafting and compatibiliza-tion of polymer blends. A variety of organic peroxides offer useful reactivity over a temperature range from 0 to 130°C or more, for different polymers and different processes. [Pg.664]

Pig. 6. Ethylene polymerization by heterogenized systems on the base of TiCOC Hg).-A1(C2H5)2C1. Homogeneous system (1). Polymer barrier polyethylene grafted with polydiallylamine (2), polyethylene grafted with polyallylamine (3). polyethylene grafted with polyallyl alcohol (4) polyethylene grafted with polyacrylic acid (5) (toluene, 70°C, Al/Ti=100, pQ jj =10 atm). [Pg.47]

Gupta B, Anjum N. Preparation of ion-exchange membranes by hydrolysis of radiation-grafted polyethylene-g-polyacryl-amide membranes. J. Appl. Polym. Sci. 2003 90 149-154. [Pg.136]

Figure 6 26. Experimental data for water mole fraction in the permeate and the permeation rate. (Temperature, 35 C membrane, polyethylene grafted with polyacrylic acid system, water/ethanol mixtures.) (Reproduced from [240] with permission.)... Figure 6 26. Experimental data for water mole fraction in the permeate and the permeation rate. (Temperature, 35 C membrane, polyethylene grafted with polyacrylic acid system, water/ethanol mixtures.) (Reproduced from [240] with permission.)...
ACPA azobis(4-cyanopentanoic acid) AIBN azobis isobutyronitrile) BPO benzoyl peroxide DVB divinyl benzene, EGA 2-ethylcyano-acrylate HPC hydroxypropyl cellulose MMA methyl methacrylate PAAc polyacrylic acid PEI polyethyleneimine, PEO/PPO polyethylene oxide/polypyropylene oxide copolymer PVME polyvinylmethylether PVP polyvinylpyrrolidone K-30 DMSO dimethylsulfoxide PGA polyglutaraldehyde CMS chloromethylstyrene PMMA-g-OSA polymethylmethacrylate grafted oligostearic acid. [Pg.202]

Superabsorbent polymers are now commonly made from the polymerization of acrylic acid blended with sodium hydroxide in the presence of an initiator to form a polyacrylic acid, sodium salt (sometimes referred to as cross-linked sodium polyacrylate). Some of the polymers include polyacrylamide copolymer, ethylene maleic anhydride copolymer, cross-linked carboxy-methyl-cellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, and starch grafted copolymer of polyacrylonitrile to name a few. The latter is one of the oldest SAP forms created. [Pg.32]

Alkyd and polyester resins, epoxy compounds, phenol-formaldehyde resin, urea and/or melamine-aldehyde resin, cyclic urea resin, carbamide acid ester formaldehyde resin, ketone formaldehyde resin, polyurethane, polyvinylester, polyvinyl acetate, polyvinyl chloride and polymer mixtures, polyethylene, polystryrene, styrene mixtures and graft copolymers, polyamide, polycarbonate, polyvinyl ether, polyacrylic and methacrylic acid esters, polyvinyl flouride, polyvinylidene chloride copolymers, UV and/or electron irradiated lacquers. [Pg.45]

At one time butadiene-acrylonitrile copolymers (nitrile rubbers) were the most important impact modifiers. Today they have been largely replaced by acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-butadiene-styrene (MBS) terpolymers, chlorinated polyethylene, EVA-PVC graft polymers and some polyacrylates. [Pg.341]

Unplasticized PVC present some processing difficulties due to its high melt viscosity in addition, the finished product is too brittle for some applications. To overcome these problems and to produce toughening, certain polymeric additives are usually added to the PVC. These materials, known as impact modifiers, are generally semicompatible and often some what rubbery in nature [14]. Among the most important impact modifiers in use today are butadiene-acrylonitrile copolymers (nitrile rubber), acrylonitrile-butadiene-styrene (ABS) graft terpolymers, methacrylate-butadiene-styrene (MBS) terpo-lymers, chlorinated polyethylene, and some polyacrylates. [Pg.400]

In addition to ABS, with polybutadiene as the elastifying component, there is another forerunner among the polymer products formulated for low-temperature impact resistance, PVC-U. Elastifying ligands include EVAC, EVAC/VC graft polymer, PAEA C (polyacrylic acid ester/vinyl chloride copolymer), ACE (acrylic ester/MMA graft polymer) as well as the chlorinated low-pressure polyethylene PE-C in use for over 35 years. All of the polymer blends listed here are suitable for outdoor applications since they contain no unsaturated components. Polybutadiene-modified products are better suited to interior applications, for example MBS, a methylmethacrylate/butadiene/styrene graft polymer [55]. [Pg.124]

The earliest work of this kind appears to have been the grafting of polyacrylic acid to cellophane films [2] although many years earlier ion exchange membranes were prepared by grafting polystyrene to teflon and polyethylene followed by sulfo-nation [3]. Later a number of commercial ion exchange membranes were studied for the removal of sodium chloride and other salts from water by a reverse osmosis... [Pg.249]

To achieve good toughness, required for many applications, impact modifiers are added to PVC. Chlorinated polyethylenes, ethylene-vinyl acetate copolymers, styrene-methyl methacrylate grafted elastomers, vinyl rubbers, and polyacrylates are the most frequently used (316). These polymers are blended together with other additives. Blending conditions are extraordinary important for morphology control and consequently for final properties of the blends. [Pg.6292]

ESR spectroscopy has been applied to studies of unsaturation and other structural features in a wide range of homopolymers including polyethylene [101-110], polypropylene [111-121], polybutenes [115], polystyrene [122-124], PVC [125,126], polyvinylidene chloride [127], polymethylmethacrylate [128-137], polyethylene glycol polycarbonates [137-140], polyacrylic acid [136-139, 141, 142], polyphenylenes [143], polyphenylene oxides [143], polybutadiene [144], conjugated dienes [145,146], polyester resins [146], cellophane [143,147] and also to various copolymers including styrene grafted polypropylene [148], ethylene-acroline [149], butadiene-isobutylene [150], vinyl acetate copolymers [151] and vinyl chloride-propylene. [Pg.336]

Tg measurements have been performed on many other polymers and copolymers including phenol bark resins [71], PS [72-74], p-nitrobenzene substituted polymethacrylates [75], PC [76], polyimines [77], polyurethanes (PU) [78], Novolac resins [71], polyisoprene, polybutadiene, polychloroprene, nitrile rubber, ethylene-propylene-diene terpolymer and butyl rubber [79], bisphenol-A epoxy diacrylate-trimethylolpropane triacrylate [80], mono and dipolyphosphazenes [81], polyethylene glycol-polylactic acid entrapment polymers [82], polyether nitrile copolymers [83], polyacrylate-polyoxyethylene grafts [84], Novolak type thermosets [71], polyester carbonates [85], polyethylene naphthalene, 2,6, dicarboxylate [86], PET-polyethylene 2,6-naphthalone carboxylate blends [87], a-phenyl substituted aromatic-aliphatic polyamides [88], sodium acrylate-methyl methacrylate multiblock copolymers [89], telechelic sulfonate polyester ionomers [90], aromatic polyamides [91], polyimides [91], 4,4"-bis(4-oxyphenoxy)benzophenone diglycidyl ether - 3,4 epoxycyclohexyl methyl 3,4 epoxy cyclohexane carboxylate blends [92], PET [93], polyhydroxybutyrate [94], polyetherimides [95], macrocyclic aromatic disulfide oligomers [96], acrylics [97], PU urea elastomers [97], glass reinforced epoxy resin composites [98], PVOH [99], polymethyl methacrylate-N-phenyl maleimide, styrene copolymers [100], chiral... [Pg.97]


See other pages where Polyethylene-graft-polyacrylic is mentioned: [Pg.62]    [Pg.62]    [Pg.253]    [Pg.17]    [Pg.179]    [Pg.508]    [Pg.511]    [Pg.331]    [Pg.420]    [Pg.224]    [Pg.194]    [Pg.875]    [Pg.185]    [Pg.63]    [Pg.676]    [Pg.351]    [Pg.187]    [Pg.360]    [Pg.205]    [Pg.173]    [Pg.403]    [Pg.145]    [Pg.196]    [Pg.317]    [Pg.219]    [Pg.181]    [Pg.410]    [Pg.93]    [Pg.457]   


SEARCH



Polyacrylate

Polyacrylates

Polyacrylic

Polyacrylics

Polyethylene grafted

Polyethylene grafting

© 2024 chempedia.info