Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters also unsaturated

Although low-molar-mass aliphatic polyesters and unsaturated polyesters can be synthesized without added catalyst (see Sections 2.4.1.1.1 and 2.4.2.1), the presence of a catalyst is generally required for the preparation of high-molar-mass polyesters. Strong acids are very efficient polyesterification catalysts but also catalyze a number of side reactions at elevated temperature (>160°C), leading to polymers of inferior quality. Acid catalysts are, therefore, not much used. An exception is the bulk synthesis of hyperbranched polyesters reported in Section 2.4.5.1, which is carried out at moderate temperature (140°C) under vacuum in the presence of p-toluene sulfonic acid catalyst. The use of strongly acidic oil-soluble catalysts has also been reported for the low-temperature synthesis of polyester oligomers in water-in-oil emulsions.216... [Pg.64]

IPNs are found in many applications though this is not always recognised. For example conventional crosslinked polyester resins, where the polyester is unsaturated and crosslinks are formed by copolymerisation with styrene, is a material which falls within the definition of an interpenetrating polymer network. Experimental polymers for use as surface coatings have also been prepared from IPNs, such as epoxy-urethane-acrylic networks, and have been found to have promising properties. [Pg.154]

Alkyd resins are also polyesters containing unsaturation that can be cross-linked in the presence of an initiator known traditionally as a drier. A common example is the alkyd formed from phthalic anhydride and a glyceride of linolenic acid obtained from various plants. Cross-linking of the multiple bonds in the long unsaturated chain produces the thermoset polymer. [Pg.36]

EINECS 246-614-4 Isooctyl phosphite ((C8H170)3P) Phosphorous acid, triisooctyl ester Triisooctyl phosphite Weston TIOP. Intermediate insecticides lubricant additive specialty solvents stabilizer for acrylics, nylon, unsaturated polyester, PVC improves antiwear and antifriction properties. Stabilizer tor hot-melt adhesives. PU, polyesters used in molding, extrusion, and film applications in PP, HOPE, LDPE, PVC, and polyesters also useful for PP fiber applications and calendering of PVC. Oil d = 0.891. Albright i Wilson Americas Inc. GE Specialities Stave. [Pg.646]

One class of such materials is the fluorinated alkyl esters of acrylic and methacrylic acid, a number of which have been prepared [1]. One of these esters, poly(l,l-dihydropentadecafluoro-octyl methacrylate), has a 11 dynes per cm.—less than Teflon TFE or even FEP [4]. Such materials, and others within the general class of unsaturated, appropriately fluorinated, polyesters warrant investigation for use either as thermoplastic hot-melt adhesives, or for cross linking in situ to form rigid thermoset adhesives. The saturated, appropriately fluorinated polyesters also warrant investigation as thermoplastic hot-melt adhesives. [Pg.199]

The thermal stability of composites containing natural fibres may also depend on the nature of the matrix. In the case of composites containing unsaturated polyester or unsaturated polyester modified with acrylic acid reinforced with jute fibres it was shown that the composites with modified polyester matrix were more resistant to temperature than the ones with unmodified polyester matrix. The reason for this enhanced thermal stability was the presence of acrylic acid as modifier [45]. [Pg.31]

Polyester also refers to the various polymers in which the backbones are formed by the "esterification condensation of polyfunctional alcohols and acids". Polyester can also be classified as saturated and unsaturated polyesters. Saturated polyesters refer to the family of polyesters in which the polyester backbones are saturated. They are thus not as reactive as unsaturated polyesters. The linear, high molecular weight polymer works as a thermoplastic, such as polyethylene terephthalate (Dacron and Mylar). The common reactants for making saturated polyesters are a glycol and an acid or anhydride. [Pg.275]

The presence of the unsaturated substituent along this polyester backbone gives this polymer crosslinking possibilities through a secondary reaction of the double bond. These polymers are used in paints, varnishes, and lacquers, where the ultimate cross-linked product results from the oxidation of the double bond as the coating cures. A cross-linked polyester could also result from reaction (5.J) without the unsaturated carboxylic acid, but the latter would produce a gel in which the entire reaction mass solidified and is not as well suited to coatings applications as the polymer that crosslinks upon drying. ... [Pg.300]

Uses. The a2obisnitriles have been used for bulk, solution, emulsion, and suspension polymeri2ation of all of the common vinyl monomers, including ethylene, styrene vinyl chloride, vinyl acetate, acrylonitrile, and methyl methacrylate. The polymeri2ations of unsaturated polyesters and copolymeri2ations of vinyl compounds also have been initiated by these compounds. [Pg.224]

Antimony oxide and 2inc borate are also used as synergists for unsaturated polyesters. Their combined effect on the flame spread index (25) is ... [Pg.461]

Bromine as a Reactive Flame Retardant. Bromine and chlorine are the starting materials for all of the commercial compounds described. Bromine is also used in a somewhat different way to impart flame retardancy. That is, it is used to brominate the resin in interest directly. This is practiced commercially in the case of unsaturated polyesters (59). [Pg.470]

Polyols. Several important polyhydric alcohols or polyols are made from formaldehyde. The principal ones include pentaerythritol, made from acetaldehyde and formaldehyde trimethylolpropane, made from -butyraldehyde and formaldehyde and neopentyl glycol, made from isobutyraldehyde and formaldehyde. These polyols find use in the alkyd resin (qv) and synthetic lubricants markets. Pentaerythritol [115-77-5] is also used to produce rosin/tall oil esters and explosives (pentaerythritol tetranitrate). Trimethylolpropane [77-99-6] is also used in urethane coatings, polyurethane foams, and multiftmctional monomers. Neopentyl glycol [126-30-7] finds use in plastics produced from unsaturated polyester resins and in coatings based on saturated polyesters. [Pg.497]

Trimethyl-l,3-pentanediol (7) is a white, crystalline soHd. It is used in surface coating and unsaturated polyester resins. It also appears promising as an intermediate for synthetic lubricants and polyurethane elastomers and foams. [Pg.373]

Wheieas the BPO—DMA ledox system works well for curing of unsaturated polyester blends, it is not a very effective system for initiating vinyl monomer polymerizations, and therefore it generally is not used in such appHcations (34). However, combinations of amines (eg, DMA) and acyl sulfonyl peroxides (eg, ACSP) are very effective initiator systems at 0°C for high conversion suspension polymerizations of vinyl chloride (35). BPO has also been used in combination with ferrous ammonium sulfate to initiate emulsion polymerizations of vinyl monomers via a redox reaction (36). [Pg.224]

Peioxydicaibonates are efficient polymerization initiators for most vinyl monomer polymerizations, especially for monomers such as acrylates, ethylene, and vinyl chloride. They are particularly good initiators for less reactive monomers such as those containing aHyl groups. They are also effective for curing of unsaturated polyester mol ding resins. [Pg.227]

Itaconic acid is a specialty monomer that affords performance advantages to certain polymeric coatings (qv) (see Polyesters, unsaturated). Emulsion stabihty, flow properties of the formulated coating, and adhesion to substrates are improved by the acid. Acrylonitrile fibers with low levels of the acid comonomer exhibit improved dye receptivity which allows mote efficient dyeing to deeper shades (see Acrylonitrile polymers Fibers, acrylic) (10,11). Itaconic acid has also been incorporated in PAN precursors of carbon and graphite fibers (qv) and into ethylene ionomers (qv) (12). [Pg.472]

Fumaric acid occurs naturally in many plants and is named after Fumaria officinalis, a climbing aimual plant, from which it was first isolated. It is also known as (E)-2-butenedioic acid, aHomaleic acid, boletic acid, Hchenic acid, or /n j -l,2-ethylenedicarboxylic acid. It is used as a food acidulant and as a raw material in the manufacture of unsaturated polyester resins, quick-setting inks, furniture lacquers, paper sizing chemicals, and aspartic acid [56-84-8]. [Pg.447]

The di(hydroxyaLkyl) peroxide (2) from cyclohexanone is a soHd which is produced commercially. The di(hydroxyaLkyl) peroxide (2) from 2,4-pentanedione (11, n = 1 X = OH) is a water-soluble soHd which is also produced commercially (see Table 5). Both these peroxides are used for curing cobalt-promoted unsaturated polyester resins. Because these peroxides are susceptible to promoted decomposition with cobalt, they must exist in solution as equihbrium mixtures with hydroperoxide stmctures (122,149). [Pg.116]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Carbon-Fiber Composites. Cured laminates of phenoHc resins and carbon-fiber reinforcement provide superior flammabiHty resistance and thermal resistance compared to unsaturated polyester and epoxy. Table 15 shows the dependence of flexural strength and modulus on phenoHc—carbon-fiber composites at 30—40% phenoHc resin (91). These composites also exhibit long-term elevated temperature stabiHty up to 230°C. [Pg.307]


See other pages where Polyesters also unsaturated is mentioned: [Pg.31]    [Pg.23]    [Pg.234]    [Pg.41]    [Pg.231]    [Pg.8]    [Pg.48]    [Pg.280]    [Pg.203]    [Pg.489]    [Pg.218]    [Pg.424]    [Pg.247]    [Pg.468]    [Pg.470]    [Pg.354]    [Pg.368]    [Pg.225]    [Pg.481]    [Pg.532]    [Pg.447]    [Pg.313]   
See also in sourсe #XX -- [ Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 ]

See also in sourсe #XX -- [ Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 ]




SEARCH



Polyesters (also

Unsaturated polyesters

© 2024 chempedia.info