Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyamides Polybutadiene

MAJOR POLYMER APPLICATIONS ABS, acrylic, ethylene propylene butene terpolymer, ethylene propylene diene copolymer, ethylene propylene rubber, ethylene vinyl acetate copolymer, ionomers, polyamide, polybutadiene, polyethylene, polylactide, polymethylmethacrylate, polypropylene, polystyrene, polyvinylchloride, SAN, SBR, SBS, silicone rubber, TPE... [Pg.20]

Pubhcations on curing polymers with TAIC include TEE—propylene copolymer (135), TEE—propylene—perfluoroaHyl ether (136), ethylene—chlorotrifluoroethylene copolymers (137), polyethylene (138), ethylene—vinyl acetate copolymers (139), polybutadienes (140), PVC (141), polyamide (142), polyester (143), poly(ethylene terephthalate) (144), sdoxane elastomers (145), maleimide polymers (146), and polyimide esters (147). [Pg.88]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

TDI isomers, 210 Tear strength tests, 242-243 TEDA. See Triethylene diamine (TEDA) Telechelic oligomers, 456, 457 copolymerization of, 453-454 Telechelics, from polybutadiene, 456-459 TEM technique, 163-164 Temperature, polyamide shear modulus and, 138. See also /3-transition temperature (7)>) Brill temperature Deblocking temperatures //-transition temperature (Ty) Glass transition temperature (7) ) Heat deflection temperature (HDT) Heat distortion temperature (HDT) High-temperature entries Low-temperature entries Melting temperature (Fm) Modulu s - temperature relationship Thermal entries Tensile strength, 3, 242 TEOS. See Tetraethoxysilane (TEOS)... [Pg.602]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

V C chains with rigid moieties and virtual bonds copolymers e. g. polyesters, polyamides, and polybutadienes... [Pg.8]

HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HMX HNS NTO NTO/HMX NTO/HMX NTO/HMX PETN PETN PETN PETN PETN PETN PETN PETN PETN PETN RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX RDX TATB/HMX Cariflex (thermoplastic elastomer) Hydroxy-terminated polybutadiene (polyurethane) Hydroxy-terminated polyester Kraton (block copolymer of styrene and ethylene-butylene) Nylon (polyamide) Polyester resin-styrene Polyethylene Polyurethane Poly(vinyl) alcohol Poly(vinyl) butyral resin Teflon (polytetrafluoroethylene) Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Cariflex (block copolymer of butadiene-styrene) Cariflex (block copolymer of butadiene-styrene) Estane (polyester polyurethane copolymer) Hytemp (thermoplastic elastomer) Butyl rubber with acetyl tributylcitrate Epoxy resin-diethylenetriamine Kraton (block copolymer of styrene and ethylene-butylene) Latex with bis-(2-ethylhexyl adipate) Nylon (polyamide) Polyester and styrene copolymer Poly(ethyl acrylate) with dibutyl phthalate Silicone rubber Viton (fluoroelastomer) Teflon (polytetrafluoroethylene) Epoxy ether Exon (polychlorotrifluoroethylene/vinylidine chloride) Hydroxy-terminated polybutadiene (polyurethane) Kel-F (polychlorotrifluoroethylene) Nylon (polyamide) Nylon and aluminium Nitro-fluoroalkyl epoxides Polyacrylate and paraffin Polyamide resin Polyisobutylene/Teflon (polytetrafluoroethylene) Polyester Polystyrene Teflon (polytetrafluoroethylene) Kraton (block copolymer of styrene and ethylene-butylene)... [Pg.12]

Naturtal rubber and polybutadiene Polyamides (e.g., PA 6 and PA 66) Polyphenylene ether (PPE) and polystyrene... [Pg.126]

The above thermal analysis studies demonstrated the enhanced thermal stability of POSS materials, and suggested that there is potential to improve the flammability properties of polymers when compounded with these macromers. In a typical example of their application as flame retardants, a U.S. patent39 described the use of preceramic materials, namely, polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins, and POSS (structures are shown in Figure 8.6) to improve the flammability properties of thermoplastic polymers such as, polypropylene and thermoplastic elastomers such as Kraton (polystyrene-polybutadiene-polystyrene, SBS) and Pebax (polyether block-polyamide copolymer). [Pg.192]

Pleated sheet conformation, 30,31 PLEDs (polymeric light-emitting diodes), 218 Plexiglas, 62 Plunkett, Roy, 65-66 PMMA. See Poly(methyl methacrylate) Polartec (Polar Fleece), 194 Poly(6-aminohexanoic acid), 25 Poly(a methyl styrene), 20 Polyacetylene, 72, 73 Polyacrylamide, 20 Polyamides, 22, 28, 61, 146 biodegradable, 185 Polyaramids, 77, 86 Polybutadiene, 70,109,148,155 Poly butyl acrylate), 20 Poly(butylene isophthalate), 25 Polycaprolactam, 21 Polycarbonate (PC), 17, 48, 86, 140 biodegradable, 185 density of, 247 impact strength of, 143 permeability of, 163 Polychloroprene, 65 Polycondensation, 85, 90-91 interfacial, 91-92... [Pg.274]

Besides the use of micromolecular multiinitiators, block copolymers can be obtained from macromolecular initiators. In a first step, a polymeric initiator is generally synthesized by reacting a mono- or difunctional polymer with a functional initiator. Various macromolecular initiators were prepared in this way including quite different sequences polystyrene [13, 18, 19, 25, 26], poly(dimethylsiloxane) [27], polymethylmethacrylate) [13,15,28], polyvinylacetate [28], polyvinylchloride [29, 30], polyesters [30], polycarbonate [31,32], polybutadiene [13, 25, 33], polyamide [34], polyethylene glycol) [35] or polyaromatic [36], An excellent review of the synthesis and uses of such macroinitiators was written by Nuyken and Voit [37]. Thus, only few typical examples are going to be mentioned below. [Pg.95]

In their patents, Sheppared et al. [18,19] proposed the synthesis of a series of di- or triblock copolymers from polyazomacroinitiators including various types of sequences polystyrene, polybutadiene, polyamide, poly(butyl sebacate), polyether, poly(butyl azelate) or polycarbonate. They observed that these... [Pg.95]

Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS). Figure 5.1. Molecular structures of the chemical repeat units for common polymers. Shown are (a) polyethylene (PE), (b) poly(vinyl chloride) (PVC), (c) polytetrafluoroethylene (PTFE), (d) polypropylene (PP), (e) polyisobutylene (PIB), (f) polybutadiene (PBD), (g) c/5-polyisoprene (natural rubber), (h) traw5-polychloroprene (Neoprene rubber), (i) polystyrene (PS), (j) poly(vinyl acetate) (PVAc), (k) poly(methyl methacrylate) (PMMA), ( ) polycaprolactam (polyamide - nylon 6), (m) nylon 6,6, (n) poly(ethylene teraphthalate), (o) poly(dimethyl siloxane) (PDMS).
Polybutadiene, polyisoprene Polyesters, polyurethanes, polyamides (nylons) Polyacetals, polycarbonates Polytirethanes, polyesters, nylons Polyether-polyurethane... [Pg.612]

Poly(dimethylsiloxane), polyether-block-polyamides and polyurethane membranes Polyether-block-polyamides membrane and polybutadiene membrane... [Pg.124]


See other pages where Polyamides Polybutadiene is mentioned: [Pg.526]    [Pg.127]    [Pg.526]    [Pg.127]    [Pg.502]    [Pg.757]    [Pg.31]    [Pg.712]    [Pg.480]    [Pg.287]    [Pg.147]    [Pg.12]    [Pg.378]    [Pg.96]    [Pg.192]    [Pg.426]    [Pg.487]    [Pg.12]    [Pg.286]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Polyamide-polybutadiene blends

© 2024 chempedia.info