Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene sequences

In the same way, a blend with a star copolymer with n branches of SI (the polystyrene sequences being outside the star), blended with free diblock copolymer and respecting the constraints developed for the tetrablock, is a good candidate to replace the [SIS-SI] blends. [Pg.241]

After brief discussion of the state-of-the-art of modern Py-GC/MS, some most recent applications for stixictural and compositional chai acterization of polymeric materials are described in detail. These include microstixictural studies on sequence distributions of copolymers, stereoregularity and end group chai acterization for various vinyl-type polymers such as polystyrene and polymethyl methacrylate by use of conventional analytical pyrolysis. [Pg.17]

Figure 8.1. (a) Spherulites growing in a thin film of isotactic polystyrene, seen by optical microscopy with crossed polars (from Bassett 1981, after Keith 196.3). (b) A common sequence of forms leading to sphertililic growth (after Bassett 1981). The fibres consist of zigzag polymer chains. [Pg.312]

It is typical, for instance, of syndiotactic polystyrene (s-PS) [7-9] and syndiotactic poly- p-methylstyrene (s-PPMS) [10] to present crystalline forms with a transplant conformation of the chains (shown for s-PS in Fig. 1) as well as crystalline forms with sequences of dihedral angles of the kind TTG+G+ (or the equivalent G G TT), corresponding to a s(2/l)2 helical symmetry of the chains (shown for s-PS in Fig. 1). [Pg.188]

A general method has been developed for the estimation of model parameters from experimental observations when the model relating the parameters and input variables to the output responses is a Monte Carlo simulation. The method provides point estimates as well as joint probability regions of the parameters. In comparison to methods based on analytical models, this approach can prove to be more flexible and gives the investigator a more quantitative insight into the effects of parameter values on the model. The parameter estimation technique has been applied to three examples in polymer science, all of which concern sequence distributions in polymer chains. The first is the estimation of binary reactivity ratios for the terminal or Mayo-Lewis copolymerization model from both composition and sequence distribution data. Next a procedure for discriminating between the penultimate and the terminal copolymerization models on the basis of sequence distribution data is described. Finally, the estimation of a parameter required to model the epimerization of isotactic polystyrene is discussed. [Pg.282]

Triblock copolymers, as shown in Fig. 5.8 d), comprise a central homopolymer block of one type, the ends of which are attached to homopolymer chains of another type. As with other block copolymers, the components of triblocks may be compatible or incompatible, which will strongly influence their properties. Of particular interest are triblocks with incompatible sequences, the middle block of which is rubbery, and the end blocks of which are glassy and form the minor phase. When such polymers phase-segregate, it is possible for the end blocks of a single molecule to be incorporated into separate domains. Thus, a number of rubbery mid-block chains connect the glassy phases to one another. These materials display rubber-like properties, with the glassy domains acting as physical crosslinks. Examples of such materials are polystyrene/isoprene/polystyrene and polystyrene/polybutadiene/polystyrene triblock copolymers. [Pg.109]

Poly(methyl methacrylate) provides a level of stabilization even though the solution in CCl is below the 0-temperature. All the copolymers, both random and block, are better stabilizers than PMM, the methacrylate units acting as anchors, with stabilizing sequences of styrene loops, of block copolymers, or mixed loops and tails, of random copolymers, at better than 0-conditions. Higher M.W. polystyrenes give silica dispersions too unstable to measure by our optical method the sediment volumes are between those of poly(methyl methacrylate) solutions and pure solvent. [Pg.315]

The hydroboration/oxidation sequence does not change the molecular-weight distribution. Gel permeation chromatography (GPC) measurements in dimethyl-formamide (DMF) with the resulting polystyrene-ft-polyalcohol polymers show very similar polydispersity indexes (Table 10.2). Here, the hydroboration/oxidation sequence is clearly superior to the epoxidation reaction, which leads to a... [Pg.154]

The above data prove that the polystyrene-h-polybutadiene prepolymer is quantitatively transformed into block copolymers with perfluorinated side chains. The narrow molecular-weight distribution (I) = MW/MN) of the prepolymers is maintained by the described reaction sequence. [Pg.156]

It has been shown recently (10) that such block structures could be tailored precisely by the general method summarized hereabove. It is indeed possible to convert the hydroxyl end-group of a vinyl polymer PA (f.i. polystyrene, or polybutadiene obtained by anionic polymerization terminated with ethylene oxide),into an aluminum alcoholate structure since it is well known that CL polymerizes in a perfectly "living" manner by ring-opening insertion into the Al-0 bond (11), the following reaction sequence provides a direct access to the desired copolymers, with an accurate control of the molecular parameters of the two blocks ... [Pg.311]


See other pages where Polystyrene sequences is mentioned: [Pg.6]    [Pg.265]    [Pg.358]    [Pg.758]    [Pg.233]    [Pg.99]    [Pg.390]    [Pg.6]    [Pg.265]    [Pg.358]    [Pg.758]    [Pg.233]    [Pg.99]    [Pg.390]    [Pg.206]    [Pg.148]    [Pg.54]    [Pg.483]    [Pg.601]    [Pg.605]    [Pg.503]    [Pg.36]    [Pg.163]    [Pg.140]    [Pg.110]    [Pg.1246]    [Pg.216]    [Pg.217]    [Pg.338]    [Pg.331]    [Pg.146]    [Pg.139]    [Pg.286]    [Pg.208]    [Pg.303]    [Pg.302]    [Pg.560]    [Pg.181]    [Pg.154]    [Pg.94]    [Pg.167]    [Pg.180]    [Pg.146]    [Pg.79]    [Pg.366]   
See also in sourсe #XX -- [ Pg.289 ]

See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Sequences in Polystyrene

© 2024 chempedia.info