Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly route

Vinyl fluoride (fluoroethene), is manufactured from the cataly2ed addition of hydrogen fluoride to acetylene. It is used to prepare poly(vinyl fluoride) which has found use in highly weather-resistant films (Tedlar film, Du Pont). Poly(vinyhdene fluoride) also is used in weather-resistant coatings (see Eluorine compounds, organic). The monomer can be prepared from acetylene, hydrogen fluoride, and chlorine but other nonacetylenic routes are available. [Pg.393]

Synthesis and Properties. The synthesis of (21) follows a very straightforward route based on readily accessible starting materials and on some novel reactions ia organo—inorganic sulfur chemistry (83—85), as well as on polycondensation chemistry analogous to that utilized ia the preparation of poly(alkyl/arylphosphazenes). One preparation of (21) is as follows ... [Pg.261]

Polymerization ofiVIasked Disilenes. A novel approach, namely, the anionic polymerization of masked disilenes, has been used to synthesize a number of poly(dialkylsilanes) as well as the first dialkylamino substituted polysilanes (eq. 13) (111,112). The route is capable of providing monodisperse polymers with relatively high molecular weight M = lO" — 10 ), and holds promise of being a good method for the synthesis of alternating and block copolymers. [Pg.262]

Poly(ethylene oxide) resins are safely used in numerous pharmaceutical and personal-care appHcations. Poly(ethylene oxide) resins show a low order toxicity in animal studies by all routes of exposure. Because of their high molecular weight, they are poorly adsorbed from the gastrointestinal tract and completely... [Pg.343]

Alternative synthetic routes to poly(arylene sulfide)s have been pubHshed (79—82). The general theme explored is the oxidative polymerization of diphenyl disulfide and its substituted analogues by using molecular oxygen as the oxidant, often catalyzed by a variety of reagents ... [Pg.444]

Nucleophilic Substitution Route. Commercial synthesis of poly(arylethersulfone)s is accompHshed almost exclusively via the nucleophilic substitution polycondensation route. This synthesis route, discovered at Union Carbide in the early 1960s (3,4), involves reaction of the bisphenol of choice with 4,4 -dichlorodiphenylsulfone in a dipolar aprotic solvent in the presence of an alkaUbase. Examples of dipolar aprotic solvents include A/-methyl-2-pyrrohdinone (NMP), dimethyl acetamide (DMAc), sulfolane, and dimethyl sulfoxide (DMSO). Examples of suitable bases are sodium hydroxide, potassium hydroxide, and potassium carbonate. In the case of polysulfone (PSE) synthesis, the reaction is a two-step process in which the dialkah metal salt of bisphenol A (1) is first formed in situ from bisphenol A [80-05-7] by reaction with the base (eg, two molar equivalents of NaOH),... [Pg.460]

Hydroformylation. Hydroformylation of aEyl alcohol is a synthetic route for producing 1,4-butanediol [110-63-4] a raw material for poly(butylene terephthalate), an engineering plastic (qv) many studies on the process have been carried out. [Pg.72]

In order to achieve the desired fiber properties, the two monomers were copolymerized so the final product was a block copolymer of the ABA type, where A was pure polyglycoHde and B, a random copolymer of mostly poly (trimethylene carbonate). The selected composition was about 30—40% poly (trimethylene carbonate). This suture reportedly has exceUent flexibiHty and superior in vivo tensile strength retention compared to polyglycoHde. It has been absorbed without adverse reaction ia about seven months (43). MetaboHsm studies show that the route of excretion for the trimethylene carbonate moiety is somewhat different from the glycolate moiety. Most of the glycolate is excreted by urine whereas most of the carbonate is excreted by expired CO2 and uriae. [Pg.191]

Poly(arylene vinylenes). The use of the soluble precursor route has been successful in the case of poly(arylene vinylenes), both those containing ben2enoid and heteroaromatic species as the aryl groups. The simplest member of this family is poly(p-phenylene vinylene) [26009-24-5] (PPV). High molecular weight PPV is prepared via a soluble precursor route (99—105). The method involves the synthesis of the bis-sulfonium salt from /)-dichloromethylbenzene, followed by a sodium hydroxide elimination polymerization reaction at 0°C to produce an aqueous solution of a polyelectrolyte precursor polymer (11). This polyelectrolyte is then processed into films, foams, and fibers, and converted to PPV thermally (eq. 8). [Pg.38]

The first methacrylic esters were prepared by dehydration of hydroxyisobutyric esters, prohibitively expensive starting points for commercial synthesis. In 1932 J. W. C. Crawford discovered a new route to the monomer using cheap and readily available chemicals—acetone, hydrocyanic acid, methanol and sulphuric acid— and it is his process which has been used, with minor modifications, throughout the world. Sheet poly(methyl methacrylate) became prominent during World War II for aircraft glazing, a use predicted by Hill in his early patents, and since then has found other applications in many fields. [Pg.399]

An alternative route involves the reaction of 1,2-epoxides with isocyanates to yield poly-2-oxazolidones (Figure 27.12). [Pg.807]

The advantage of the activated displacement polymerization is the facile incorporation of different and unconventional structural units in the polymer backbone. Most of the heteroarylene activated polyethers prepared by this route are soluble in many organic solvents. The solubility behavior of new polyethers is shown in Table 8. In contrast to many polyphenylenequi-noxalines, poly(aryl ether phenylquinoxalines) prepared by the quionoxaline activated displacement reaction are soluble in NMP. Solubility in NMP is important since it is frequently used for polymer processing in the microelectronics industry [27]. [Pg.50]

In the beginning of the investigation it was believed that enzymatic synthesis of j8-poly(L-malate) follows a route, which is similar to the synthesis of poly(j8-hydrox-ybutyrate) (for a review see [15]). However, enzymati-... [Pg.97]

The scope of Wessling route has been extended by Mullen and co-workers to develop a soluble precursor route to poly(anthrylene vinyiene)s (PAVs) [51]. It was anticipated that the energy differences between the quinoid and aromatic resonance structures would be diminished in PAV relative to PPV itself. An optical band gap of 2.12 eV was determined for 1,4-PAV 29, some 0.3 eV lower than the value observed in PPV. Interestingly, the 9, lO-b/.v-sulfonium salt does not polymerize, possibly due to stcric effects (Scheme 1-9). [Pg.18]

The strategy of Kaeriyama represents a so-called precursor route and was developed to overcome the characteristic shortcomings (insolubility, lack of process-ability) of previous PPP syntheses. The condensation reaction is carried out with solubilized monomers, leading to a soluble polymeric intermediate. In the final reaction step this intermediate is then converted, preferentially in the solid state allowing the formation of homogeneous PPP films or layers, into PPP (or other poly(arylene)s). [Pg.33]

Poly(l,4-phenylene vinylcne) and its Derivatives 2 The Basic Polymer LED Device Architecture 4 Substituted Poly(phcnylene vinylcne)s 6 Poly(anthrylenevinylcne)s 10 Step-Growth Routes to PPV Derivatives 10 PPV Copolymers 11... [Pg.321]

The sulfonium precursor route may also be applied to alkoxy-substituted PPVs, but a dehydrohalogenation-condensation polymerization route, pioneered by Gilch, is favored 37]. The polymerization again proceeds via a quinomethide intermediate, but die syndicsis of the conjugated polymer requires only two steps and proceeds often in improved yields. The synthesis of the much-studied poly 2-methoxy-5-(2-ethylhexyloxy)-l,4-phenylene vinylene], MEH-PPV 15 is outlined in Scheme 1-5 33, 35]. The solubility of MEH-PPV is believed to be enhanced by the branched nature of its side-chain. [Pg.333]

Other poly(2,5-dialkoxy-1,4-phenylene vinylene)s have been prepared in a similar fashion [34, 35, 40, 41]. Alternatively, a soluble a-halo precursor polymer 17 may be obtained by using less than one equivalent of base (Scheme 1-6). This may then be converted into fully conjugated material 16 by thermal treatment. This halo-precursor route may be preferred if the fully conjugated material has limited solubility or if incomplete conversion is desired. [Pg.333]

There have been a number of different synthetic approaches to substituted PTV derivatives proposed in the last decade. Almost all focus on the aromatic ring as the site for substitution. Some effort has been made to apply the traditional base-catalyzed dehydrohalogenation route to PTV and its substituted analogs. The methodology, however, is not as successful for PTV as it is for PPV and its derivatives because of the great tendency for the poly(u-chloro thiophene) precursor spontaneously to eliminate at room temperature. Swager and co-workers attempted this route to synthesize a PTV derivative substituted with a crown ether with potential applications as a sensory material (Scheme 1-26) [123]. The synthesis employs a Fager condensation [124] in its initial step to yield diol 78. Treatment with a ditosylate yields a crown ether-functionalized thiophene diester 79. This may be elaborated to dichloride 81, but pure material could not be isolated and the dichloride monomer had to be polymerized in situ. The polymer isolated... [Pg.343]

This survey has demonstrated that the field of conjugated arylene vinylcne pol mere has matured considerably over the past thierty years. Several synthe approaches to poly(arylene vinylenejs have been developed, and many routes ni allow solution casting of polymeric materials, thereby facilitating incorporation... [Pg.345]

The use of the hydroxyl groups of poly(vinylalcohol) as reactive sites for the preparation of various unconventional polymers is well known and indeed the very synthesis of poly(vinylalcohol) is based on a similar but reverse reaction. This general principle has been applied successfully to the synthesis of some vinyl-type furanic polymers, which cannot be made by classical routes. [Pg.85]


See other pages where Poly route is mentioned: [Pg.321]    [Pg.319]    [Pg.537]    [Pg.239]    [Pg.245]    [Pg.298]    [Pg.233]    [Pg.294]    [Pg.330]    [Pg.332]    [Pg.361]    [Pg.445]    [Pg.202]    [Pg.294]    [Pg.35]    [Pg.36]    [Pg.498]    [Pg.586]    [Pg.335]    [Pg.716]    [Pg.331]    [Pg.28]    [Pg.37]    [Pg.131]    [Pg.196]    [Pg.344]    [Pg.493]    [Pg.282]    [Pg.436]   
See also in sourсe #XX -- [ Pg.245 , Pg.246 ]




SEARCH



Poly Gilch route

Poly Heck-coupling route

Poly administration routes

Poly chlorine precursor route

Poly nonionic route

Poly precursor route

Poly synthetic routes

Precursor Routes to Poly(p-Phenylene)

Route to poly

Synthetic Routes to Poly(p-Phenylene Vinylenes)

© 2024 chempedia.info