Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly pyrolysis

Physical or chemical vapor-phase mechanisms may be reasonably hypothesized in cases where a phosphoms flame retardant is found to be effective in a noncharring polymer, and especially where the flame retardant or phosphoms-containing breakdown products are capable of being vaporized at the temperature of the pyrolyzing surface. In the engineering of thermoplastic Noryl (General Electric), which consists of a blend of a charrable poly(phenylene oxide) and a poorly charrable polystyrene, experimental evidence indicates that effective flame retardants such as triphenyl phosphate act in the vapor phase to suppress the flammabiUty of the polystyrene pyrolysis products (36). [Pg.475]

Turning now to other types of ceramic fibre, the most important material made by pyrolysis of organic polymer precursors is silicon carbide fibre. This is commonly made from a poly(diorgano)silane precursor, as described in detail by Riedel (1996) and more concisely by Chawla (1998). Silicon nitride fibres are also made by this sort of approach. Much of this work originates in Japan, where Yajima (1976) was a notable pioneer. [Pg.439]

On the other hand, poly(ethoxycarbonylimino-4-vi-nylpyridinium ylide) (Scheme 13) was prepared essentially by the same method from 1-ethoxycarbonylimino-pyridinium ylide, as described by Hafner [15] from the reaction of poly (4-vinylpyridine) with nitrene, generated from the pyrolysis of ethyl azidoformate. [Pg.375]

The above strategy was tested [27] with a 3-layer LED consisting of a poly(2,5-thienylene vinylene) (PTV) layer, known to have particularly low oxidation potential [28], followed by a layer of l,4-fcrs-(4 -diphenylaminostyryl)-2,5-di-methoxy-benzene (DASMB) [29] and a layer of 2-(4-biphenyl)-5-(4-tcrt-butyl-pheenyl)-1,3,4-oxadiazol (PBD) dispersed in polystyrene (PS) in a 20 80 ratio. Films of poly-(2,5-thienylene-a-bromoethylcne) were obtained by vapor phase pyrolysis of 2,5-W.v-(bromomethyl)lhiophcne and subsequent vapor deposition of the quinoid monomers onto a cold substrate following a previously published procedure [30]. They were converted to PTV by temperature-induced elimination of HBr. [Pg.201]

The first type of polycarbosilane synthesized by using ADMET methodology was a poly[carbo(dimethyl)silane].14c Linear poly(carbosilanes) are an important class of silicon-containing polymers due to their thermal, electronic, and optical properties.41 They are also ceramic precursors to silicon carbide after pyrolysis. ADMET opens up a new route to synthesize poly(carbosilanes), one that avoids many of the limitations found in earlier synthetic methods.41... [Pg.450]

TECHNO-ECONOMIC ANALYSIS OF THE PYROLYSIS OF POLY(METHYL METHACRYLATE)... [Pg.59]

The purpose of the study was to determine the optimum conditions of operation of pyrolysis equipment by the combined solution of equations relating to the technological and economic analysis of the process. The material considered was poly(methyl methacrylate) one of the most popular types of plastic waste. Articles from this journal can be requested for translation by subscribers to the Rapra produced International Polymer Science and Technology. [Pg.59]

A GC-IR-MS system with library search capability has been used to effectively identify the pyrolysis products of polybutadiene and the antioxidant additive 2,6-di-f-butyl-4-methylphenol [199]. Paper for food packaging was analysed by P T (at 100 °C) combined with /i-GC-UV. No specific applications of /rGC-UV to poly-mer/additive analysis have as yet been reported. [Pg.459]

In this study, we extend the range of inorganic materials produced from polymeric precursors to include copper composites. Soluble complexes between poly(2-vinylpyridine) (P2VPy) and cupric chloride were prepared in a mixed solvent of 95% methanol 5% water. Pyrolysis of the isolated complexes results in the formation of carbonaceous composites of copper. The decomposition mechanism of the complexes was studied by optical, infrared, x-ray photoelectron and pyrolysis mass spectroscopy as well as thermogravimetric analysis and magnetic susceptibility measurements. [Pg.430]

Other monomeric precursors similar to 6-hexynyl-decaborane such as 6-norbornenyl-decaborane (129) and 6-cyclooctenyl-decaborane (131) (Fig. 75) underwent ROMP in the presence of either first- or second-generation Grubbs catalysts to produce the corresponding poly(norbornenyl-decaborane) (130) (Fig. 75) and poly(cyclooctenyl-decaborane) (132) (Fig. 75) with Mn > 30 kDa and polydis-persities between 1.1 and 1.8.152 Electrostatic spinning and pyrolysis of poly (norbomenyl-decaborane) was discovered to produce nanoscale, free-standing porous boron-carbide/carbon, ceramic fiber matrices.153... [Pg.76]

On heating in air at 10°C per min, poly(m-carborane-siloxane) shows typically only 4% mass loss at 450°C and 7% mass loss at 600°C (see Fig. 4). In comparison, siloxanes without carborane units, show an approximate 50% mass loss at 450°C. As a consequence of the relatively high boron and carbon content of these materials, pyrolysis is expected to generate ceramic residues of boron carbide/silicon carbide. [Pg.110]

The endothermic nitride is susceptible to explosive decomposition on friction, shock or heating above 100°C [1], Explosion is violent if initiated by a detonator [2], Sensitivity toward heat and shock increases with purity. Preparative precautions have been detailed [3], and further improvements in safety procedures and handling described [4], An improved plasma pyrolysis procedure to produce poly (sulfur nitride) films has been described [5], Light crushing of a small sample of impure material (m.p. below 160°C, supposedly of relatively low sensitivity) prior to purification by sublimation led to a violent explosion [6] and a restatement of the need [4] for adequate precautions. Explosive sensitivity tests have shown it to be more sensitive to impact and friction than is lead azide, used in detonators. Spark-sensitivity is, however, relatively low [7],... [Pg.1808]

Montaudo and co-workers have used direct pyrolysis mass spectrometry (DPMS) to analyse the high-temperature (>500°C) pyrolysis compounds evolved from several condensation polymers, including poly(bisphenol-A-carbonate) [69], poly(ether sulfone) (PES) and poly(phenylene oxide) (PPO) [72] and poly(phenylene sulfide) (PPS) [73]. Additionally, in order to obtain data on the involatile charred residue formed during the isothermal pyrolysis process, the pyrolysis residue was subjected to aminolysis, and then the aminolyzed residue analysed using fast atom bombardment (FAB) MS. During the DPMS measurements, EI-MS scans were made every 3 s continuously over the mass range 10-1,000 Da with an interscan time of 3 s. [Pg.423]

As an example of the form of the information that may be derived from a pyrolysis-MS, Figure 26 [69] shows the structure of the polycarbonate (PC) and the EI-MS spectra of pyrolysis compounds obtained by DPMS of poly(bisphenol-A-carbonate) at three different probe temperatures corresponding to the three TIC (total ion current) maxima shown in Figure 27(b) Figure 27 compares the MS-TIC curve with those obtained from thermogravimetry. (The TIC trace is the sum of the relative abundances of all the ions in each mass spectrum plotted against the time (or number of scans) in a data collection sequence [70].)... [Pg.423]

Figure 26 Structure of PC and El mass spectra of pyrolysis compounds obtained by DPMS of poly(bisphenol-A-carbonate) at probe temperatures of (a) 380°C, (b) 500°C and (c) 550°C. Reprinted with permission from Puglisi et al. [69]. Copyright 1999, American Chemical Society. Figure 26 Structure of PC and El mass spectra of pyrolysis compounds obtained by DPMS of poly(bisphenol-A-carbonate) at probe temperatures of (a) 380°C, (b) 500°C and (c) 550°C. Reprinted with permission from Puglisi et al. [69]. Copyright 1999, American Chemical Society.
V.A. Basiuk and J. Douda, Pyrolysis of poly glycine and poly 1 alanine analysis of less volatile products by gas chromatography/Fourier Transform infrared spectroscopy/mass spectrometry, J. Anal. Appl. Pyrol., 55, 235 236 (2000). [Pg.323]


See other pages where Poly pyrolysis is mentioned: [Pg.259]    [Pg.456]    [Pg.329]    [Pg.426]    [Pg.148]    [Pg.202]    [Pg.482]    [Pg.5]    [Pg.99]    [Pg.358]    [Pg.380]    [Pg.505]    [Pg.164]    [Pg.27]    [Pg.39]    [Pg.20]    [Pg.373]    [Pg.125]    [Pg.147]    [Pg.430]    [Pg.114]    [Pg.128]    [Pg.136]    [Pg.412]    [Pg.427]    [Pg.270]    [Pg.270]    [Pg.271]    [Pg.271]    [Pg.147]    [Pg.322]   
See also in sourсe #XX -- [ Pg.2466 ]

See also in sourсe #XX -- [ Pg.2466 ]




SEARCH



Poly [ diacetylenes pyrolysis

Poly pyrolysis yields

Poly vinylidene fluoride, pyrolysis

Silicon carbide poly pyrolysis

© 2024 chempedia.info