Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly methyl methacrylate , organically

Materials. Beside inorganic materials (eg, barium chloride/fluoride crystals, doped with 0.05% samarium), transparent thermoplasts are preferred for the PHB technique, eg, poly (methyl methacrylate) (PMAIA), polycarbonate, and polybutyral doped with small amounts of suitable organic dyes, organic pigments like phthalocyanines, 9-arninoacridine, 1,4-dihydroxyanthraquinone [81-64-1] (quinizarin) (1), and 2,3-dihydroporphyrin (chlorin) (2). [Pg.155]

In the eady 1920s, experimentation with urea—formaldehyde resins [9011-05-6] in Germany (4) and Austria (5,6) led to the discovery that these resins might be cast into beautiful clear transparent sheets, and it was proposed that this new synthetic material might serve as an organic glass (5,6). In fact, an experimental product called PoUopas was introduced, but lack of sufficient water resistance prevented commercialization. Melamine—formaldehyde resin [9003-08-1] does have better water resistance but the market for synthetic glass was taken over by new thermoplastic materials such as polystyrene and poly(methyl methacrylate) (see Methacrylic polya rs Styrene plastics). [Pg.321]

Resin cement materials are provided as a two-part powder—Hquid product. The powder consists largely of poly(methyl methacrylate) to which various fillers (qv) maybe added. These include calcium carbonate [471-34-1], siHca [7631-86-9], barium carbonate [513-77-9], and calcium tungstate [7790-75-2]. An organic peroxide, eg, benzoyl peroxide, capable of generating free radicals is also present (see Initiators Peroxides, organic). [Pg.475]

As may be expected of an amorphous polymer in the middle range of the solubility parameter table, poly(methyl methacrylate) is soluble in a number of solvents with similar solubility parameters. Some examples were given in the previous section. The polymer is attacked by mineral acids but is resistant to alkalis, water and most aqueous inorganic salt solutions. A number of organic materials although not solvents may cause crazing and cracking, e.g. aliphatic alcohols. [Pg.409]

Polyacrylates are an industrially important class of polymers. The name polyacrylate is variously used to refer to polymers of acrylate esters [e.g., poly(methyl methacrylate)] as well as polymers of acrylic acids [e.g., poly(meth-acrylic acid)]. Because the former is organic soluble while the latter is not, chromatographic analysis of these two requires quite different conditions. This chapter discusses both types of polymers, separating their consideration when necessary. We will refer to both types of polymers as polyacrylates, letting the context indicate whether we are referring to an ester or to an acid polymer. [Pg.539]

The PBE dendron has a glass transition at about 40 °C and is soluble in various organic solvents (e.g., THF, acetone, toluene). It is therefore a moldable, thermoplastic, film-forming material. This practical feature is maintained for the lanthanide-cored dendrimer complexes. The complexes are partially miscible with poly(methyl methacrylate), affording transparent luminescence compositions by mixing in solvent. [Pg.201]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
Acidic chloroaluminate ionic liquids are excellent media for polymer cracking reactions. With the huge quantities of polymers that need to be disposed of each year the ability to break them down into useful compounds for new synthesis or to use as liquid fuels is extremely important. While certain polymers such as poly(methyl methacrylate) are easily cracked into their constituent monomers that can be reused, the majority of polymers are extremely difficult to crack into useful organic compounds. However, merely dissolving polyethylene in acidic chloroaluminate ionic liquids containing a proton source results in the formation of a mixture of alkenes and cyclic alkenes [48], The key compounds produced are shown in Figure 10.10. [Pg.214]

Table 10.5 gives the uses of acetone. A very important organic chemical that just missed the top 50 list, methyl methacrylate, is made from acetone, methanol, and hydrogen cyanide. Approximately 1.2 billion lb of this compound is manufactured and then polymerized to poly(methyl methacrylate), an important plastic known for its clarity and used as a glass substitute. The synthesis is outlined as follows. [Pg.175]

Monomer and initiator must be soluble in the liquid and the solvent must have the desired chain-transfer characteristics, boiling point (above the temperature necessary to carry out the polymerization and low enough to allow for ready removal if the polymer is recovered by solvent evaporation). The presence of the solvent assists in heat removal and control (as it also does for suspension and emulsion polymerization systems). Polymer yield per reaction volume is lower than for bulk reactions. Also, solvent recovery and removal (from the polymer) is necessary. Many free radical and ionic polymerizations are carried out utilizing solution polymerization including water-soluble polymers prepared in aqueous solution (namely poly(acrylic acid), polyacrylamide, and poly(A-vinylpyrrolidinone). Polystyrene, poly(methyl methacrylate), poly(vinyl chloride), and polybutadiene are prepared from organic solution polymerizations. [Pg.186]

FIGURE 14.9 Influence of temperature on the stress-strain behavior of a sample of poly(methyl methacrylate). (Modeled after Carswell, T.S. and Nason, H.K. Effects of Environmental Conditions on the Mechanical Properties of Organic Plastics, 1944. Copyright, ASTM, Philadelphia, PA. With permission.)... [Pg.468]

Because of acid-catalyzed hydrolysis of N-vinylpyrrolidone in water, polymerization was carried out in organic solvent - DMF. Three types of samples of poly(methacrylic acid) were used syndiotactic - obtained by radiation polymerization, atactic - obtained by radical polymerization, and isotactic - obtained by hydrolysis of isotactic poly(methyl methacrylate). It was found that in all cases the rate enhancement appeared in comparison with the blank polymerization (without template). The rate enhancement became more pronounced with increasing chain length and syndiotacticity of the template. According to the authors, the rate enhancement is connected with the stronger complex formation between poly(vinyl pyrrolidone) and syndiotactic poly(methacrylic acid) then with isotactic template. This conclusion was supported by turbimetric titration in DMF/DMSO system and by model considerations. It is worth noting, however, that... [Pg.30]

To study the secondary reactions in ketone/amine photocured organic coatings 2-isopropylthioxanthone (ITX) and poly(methyl methacrylate) (PMMA) were used as a model system (23). [Pg.463]


See other pages where Poly methyl methacrylate , organically is mentioned: [Pg.426]    [Pg.330]    [Pg.73]    [Pg.259]    [Pg.269]    [Pg.260]    [Pg.228]    [Pg.189]    [Pg.325]    [Pg.73]    [Pg.60]    [Pg.457]    [Pg.200]    [Pg.140]    [Pg.348]    [Pg.381]    [Pg.102]    [Pg.301]    [Pg.213]    [Pg.132]    [Pg.205]    [Pg.404]    [Pg.307]    [Pg.144]    [Pg.35]    [Pg.3]    [Pg.347]    [Pg.325]    [Pg.144]    [Pg.120]    [Pg.228]    [Pg.37]    [Pg.42]    [Pg.160]    [Pg.330]    [Pg.1516]   


SEARCH



Methyl methacrylate

Poly - methacrylic

Poly methacrylate

Poly methacrylics

Poly methyl methacrylate

Poly(methyl

© 2024 chempedia.info