Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly flow studies

For poly electrolyte solutions with added salt, prior experimental studies found that the intrinsic viscosity decreases with increasing salt concentration. This can be explained by the tertiary electroviscous effect. As more salts are added, the intrachain electrostatic repulsion is weakened by the stronger screening effect of small ions. As a result, the polyelectrolytes are more compact and flexible, leading to a smaller resistance to fluid flow and thus a lower viscosity. For a wormlike-chain model by incorporating the tertiary effect on the chain... [Pg.104]

We now report that in the region of the absorption band the flow linear dichroism of a solution of 1 is positive (Fig. 3). Assuming that the nature of the flow orientation is of the usual kind, i.e., that the polymer chains in a random coil conformation which dominates in solution (34) tend to align with the flow direction, this observation provides additional support for the absolute assignment of the transition moment direction along the chain direction, even in solution. Similar conclusions based on polarization studies on a stretched film of poly(di-n-hexyl silane) have recently been reported (36). [Pg.66]

Werner (1980) has studied devolatilization in corotating twin-screw extruders when the volatile component was stripped from the polymeric solution by applying a vacuum to the system. Rough estimates of the equilibrium partial pressure of the volatile component in the feedstream for each of the systems studied by Werner indicate that this pressure was less than the applied pressure, which means that bubbles could have been formed. Figure 17 shows the influence of the externally applied pressure on the exit concentration for a methyl methacrylate-poly(methyl methacrylate) system of fixed concentration. Note that the exit concentration decreases as the pressure is decreased, but seems to approach an asymptotic value at the lowest pressures studied. Werner also reported that at a fixed flow rate and feed concentration the exit concentration did not vary with screw speed (over the range 150-300 min" ), which also suggests that ky alay, is independent of screw speed. Figure 18 is a plot of data obtained by Werner on an ethylene-low-density poly(ethylene) system and also shows that decreases in the applied pressure result in decreases in the exit concentration, but here a lower asymptote is not observed. [Pg.85]

Fairbanks has also studied the effect of ultrasonic energy on the flow characteristics of a poly(methyl methacrylate) melt in a simulated injection moulder. Initially the ultrasound (20 kHz, 0-105 W) was applied either simultaneously or independently to both the extruder tube and the cylinder of the moulder. However, since no discernible effect was observed when ultrasound was applied at the extruder tube, further work with the horn in this position was discontinued. [Pg.217]

Incompatible Mixtures. Even at very low levels, many of the poly-ether additives led to incompatible mixtures. These blends were not successfully milled to a smooth sheet under any conditions tried. Instead, a mass of crumbs was obtained. These crumbs could be molded into a coherent mass, but the physical properties were poor. For example, addition of 8.75 parts of polybutene-1 oxide to Masterbatch B for CPVC alone gave a brittle, free-flowing material with these properties notched Izod impact strength, 0.7 lb/in notch, flow rate 452 g/10 min. This is a particularly interesting result, since PBO has the same chemical formula as PTHF but structurally is a substituted ethylene oxide polymer rather than a linear homopolymer. No further studies were made of such blends. [Pg.143]

Dynamic processes of complex formation of metal ions with poly-4-vinylpyridine (PVP) (Eqs. (4) and (5)) have been studied by means of the conductance stopped flow (CSF) and conductance pressure-jump (CPJ) technique 30). [Pg.113]

However, Hsieh and Kitchen 151 failed to consider the influence of their measurement temperature, 78 °C, on the stability of the poly(dienyl)lithium active centers (see section on Active Center Stability). As an example of this potential problem is the observation by two separate groups 47-152> that viscometric measurements of hydrocarbon solutions of poly(butadienyl)lithium fail to yield constant flow times (at 30 °C) following the completion of the polymerization, i.e., the flow times were found to increase with increasing time. This inability of the poly(butadienyl)lithium chain to exhibit constant solution viscosities renders it unsuitable for association studies of the type done by Hsieh and Kitchen 151). [Pg.31]


See other pages where Poly flow studies is mentioned: [Pg.573]    [Pg.114]    [Pg.56]    [Pg.589]    [Pg.21]    [Pg.880]    [Pg.894]    [Pg.448]    [Pg.103]    [Pg.62]    [Pg.1407]    [Pg.391]    [Pg.487]    [Pg.255]    [Pg.412]    [Pg.197]    [Pg.199]    [Pg.203]    [Pg.264]    [Pg.101]    [Pg.111]    [Pg.112]    [Pg.446]    [Pg.78]    [Pg.211]    [Pg.35]    [Pg.180]    [Pg.72]    [Pg.32]    [Pg.259]    [Pg.226]    [Pg.66]    [Pg.122]    [Pg.9]    [Pg.492]    [Pg.207]    [Pg.105]    [Pg.120]    [Pg.291]    [Pg.3]    [Pg.217]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Flow studies

© 2024 chempedia.info