Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly dynamic

Several questions arise on the internal dynamics associated with the breakdown of the poly ad number. We can only specnlate in what follows, awaiting the illnmination of fiiture research. [Pg.75]

Figure 3.16 Some experimental dynamic components, (a) Storage and loss compliance of crystalline polytetrafluoroethylene measured at different frequencies. [Data from E. R. Fitzgerald, J. Chem. Phys. 27 1 180 (1957).] (b) Storage modulus and loss tangent of poly(methyl acrylate) and poly(methyl methacrylate) measured at different temperatures. (Reprinted with permission from J. Heijboer in D. J. Meier (Ed.), Molecular Basis of Transitions and Relaxations, Gordon and Breach, New York, 1978.)... Figure 3.16 Some experimental dynamic components, (a) Storage and loss compliance of crystalline polytetrafluoroethylene measured at different frequencies. [Data from E. R. Fitzgerald, J. Chem. Phys. 27 1 180 (1957).] (b) Storage modulus and loss tangent of poly(methyl acrylate) and poly(methyl methacrylate) measured at different temperatures. (Reprinted with permission from J. Heijboer in D. J. Meier (Ed.), Molecular Basis of Transitions and Relaxations, Gordon and Breach, New York, 1978.)...
Williams and Ferryf measured the dynamic compliance of poly(methyl acrylate) at a number of temperatures. Curves measured at various temperatures were shifted to construct a master curve at 25°C, and the following shift factors were obtained ... [Pg.270]

A. T. Chen, and co-workers, "Comparison of the Dynamic Properties of Polyurethane Elastomers Based on Low Unsaturation Polyoxypropylene Glycols and Poly(tetramethylene oxide) Glycols," Polyurethanes World Congress 1993, Vancouver, B.C., Canada, Oct. 10—13,1993. [Pg.356]

Dynamic membranes are concentration—polarization layers formed in situ from the ultrafiltration of coUoidal material analogous to a precoat in conventional filter operations. Hydrous zirconia has been thoroughly investigated other materials include bentonite, poly(acryhc acid), and films deposited from the materials to be separated (18). [Pg.295]

The thermal glass-transition temperatures of poly(vinyl acetal)s can be determined by dynamic mechanical analysis, differential scanning calorimetry, and nmr techniques (31). The thermal glass-transition temperature of poly(vinyl acetal) resins prepared from aliphatic aldehydes can be estimated from empirical relationships such as equation 1 where OH and OAc are the weight percent of vinyl alcohol and vinyl acetate units and C is the number of carbons in the chain derived from the aldehyde. The symbols with subscripts are the corresponding values for a standard (s) resin with known parameters (32). The formula accurately predicts that resin T increases as vinyl alcohol content increases, and decreases as vinyl acetate content and aldehyde carbon chain length increases. [Pg.450]

Mamzen Oil Co. has developed various Ziegler-Natta catalysts that can produce poly(butadiene-i //-prop5iene) (PBR) (78). PBR shows tack (self-adhesion) and green (unvulcanized) dynamic properties superior to those of BR and EPDM. Carbon black-loaded vulcanizates can be compounded to give high strength and elongation at break (79,80). PBR can also be covulcanized with SBR, BR, and EPDM. [Pg.185]

Another type of membrane is the dynamic membrane, formed by dynamically coating a selective membrane layer on a finely porous support. Advantages for these membranes are high water flux, generation and regeneration in situ abiUty to withstand elevated temperatures and corrosive feeds, and relatively low capital and operating costs. Several membrane materials are available, but most of the work has been done with composites of hydrous zirconium oxide and poly(acryhc acid) on porous stainless steel or ceramic tubes. [Pg.382]

The non-bonded interaction energy, the van-der-Waals and electrostatic part of the interaction Hamiltonian are best determined by parametrizing a molecular liquid that contains the same chemical groups as the polymers against the experimentally measured thermodynamical and dynamical data, e.g., enthalpy of vaporization, diffusion coefficient, or viscosity. The parameters can then be transferred to polymers, as was done in our case, for instance in polystyrene (from benzene) [19] or poly (vinyl alcohol) (from ethanol) [20,21]. [Pg.487]

Finally, we want to describe two examples of those isolated polymer chains in a sea of solvent molecules. Polymer chains relax considerably faster in a low-molecular-weight solvent than in melts or glasses. Yet it is still almost impossible to study the conformational relaxation of a polymer chain in solvent using atomistic simulations. However, in many cases it is not the polymer dynamics that is of interest but the structure and dynamics of the solvent around the chain. Often, the first and maybe second solvation shells dominate the solvation. Two recent examples of aqueous and non-aqueous polymer solutions should illustrate this poly(ethylene oxide) (PEO) [31]... [Pg.492]

A number of examples have been studied in recent years, including liquid sulfur [1-3,8] and selenium [4], poly(o -methylstyrene) [5-7], polymer-like micelles [9,11], and protein filaments [12]. Besides their importance for applications, EP pose a number of basic questions concerning phase transformations, conformational and relaxational properties, dynamics, etc. which distinguish them from conventional dead polymers in which the reaction of polymerization has been terminated. EP motivate intensive research activity in this field at present. [Pg.510]

In systems of LP the dynamic response to a temperature quench is characterized by a different mechanism, namely monomer-mediated equilibrium polymerization (MMEP) in which only single monomers may participate in the mass exchange. For this no analytic solution, even in terms of MFA, seems to exist yet [70]. Monomer-mediated equilibrium polymerization (MMEP) is typical of systems like poly(a-methylstyrene) [5-7] in which a reaction proceeds by the addition or removal of a single monomer at the active end of a polymer chain after a radical initiator has been added to the system so as to start the polymerization. The attachment/detachment of single monomers at chain ends is believed to be the mechanism of equilibrium polymerization also for certain liquid sulphur systems [8] as well as for self-assembled aggregates of certain dyes [9] where chain ends are thermally activated radicals with no initiators needed. [Pg.539]

The presence of three oxyethylene units in the spacer of PTEB slows down the crystallization from the meso-phase, which is a very rapid process in the analogous polybibenzoate with an all-methylene spacer, P8MB [13]. Other effects of the presence of ether groups in the spacer are the change from a monotropic behavior in P8MB to an enantiotropic one in PTEB, as well as the reduction in the glass transition temperature. This rather interesting behavior led us to perform a detailed study of the dynamic mechanical properties of copolymers of these two poly bibenzoates [41]. [Pg.396]

Interfacial adhesion and, thereby, compatibility can be enhanced by the selective crosslinking reaction in polymer blends. Inoue and Suzuki [26] reported the properties of blends dynamically crosslinked PP-EPDM blends. The crosslinking agent was yV,N -/w-phenylene-bismaleimide - poly(2,2,4 - trimethyl - 1,2-dihydroquino -line) system. Increase in interfacial adhesion leads to... [Pg.640]

Compatibilization along with dynamic vulcanization techniques have been used in thermoplastic elastomer blends of poly(butylene terephthalate) and ethylene propylene diene rubber by Moffett and Dekkers [28]. In situ formation of graft copolymer can be obtained by the use of suitably functionalized rubbers. By the usage of conventional vulcanizing agents for EPDM, the dynamic vulcanization of the blend can be achieved. The optimum effect of compatibilization along with dynamic vulcanization can be obtained only when the compatibilization is done before the rubber phase is dispersed. [Pg.640]

Fig. 10. Concentration dependence of a modulus in the region of low-frequency plateau (i.e. yield stress , measured by a dynamic modulus). Dispersion medium poly (butadiene) with M = 1.35 x 105 (7), silicone oil (2) polybutadiene with M = 1 x I04 (3). The points are taken from Ref. [6], The straight line through these points is drawn by the author of the present paper. In the original work the points are connected by a curve in another manner... Fig. 10. Concentration dependence of a modulus in the region of low-frequency plateau (i.e. yield stress , measured by a dynamic modulus). Dispersion medium poly (butadiene) with M = 1.35 x 105 (7), silicone oil (2) polybutadiene with M = 1 x I04 (3). The points are taken from Ref. [6], The straight line through these points is drawn by the author of the present paper. In the original work the points are connected by a curve in another manner...
A lower max response at resonance was noted for poly butadiene-acrylic acid-containing pro-pints compared with polyurethane-containing opaque proplnts. Comparison of the measured response functions with predictions of theoretical models, which were modified to consider radiant-heat flux effects for translucent proplnts rather than pressure perturbations, suggest general agreement between theory and expt. The technique is suggested for study of the effects of proplnt-formulation variations on solid-proplnt combustion dynamics... [Pg.940]

Figure 35. Dynamic change of lifetime in an n-type silicon/polymer (poly(epichlorhydrine-co-elhylenoxide-co-allyl-glycylether plus iodide) junction during a potential sweep. The arrows show the direction of sweep (0.25 V s" ). A shoulder in the accumulation region and a peak in the depletion region of silicon are clearly seen. Figure 35. Dynamic change of lifetime in an n-type silicon/polymer (poly(epichlorhydrine-co-elhylenoxide-co-allyl-glycylether plus iodide) junction during a potential sweep. The arrows show the direction of sweep (0.25 V s" ). A shoulder in the accumulation region and a peak in the depletion region of silicon are clearly seen.
Jha A. and Bhowmick A.K., Thermoplastic elastomeric blends of poly(ethyleneterephthalate) and carylate rubber 1. Influence of interaction on thermal, dynamic mechanical and tensile properties. Polymer, 38, 4337, 1997. [Pg.156]

Papke N. and Kargar-Kocsis J., Thermoplastic elastomer based on compatibilised poly(ethyleneterphtha-late) blend Effect of rubber type and dynamic curing. Polymer, 42, 1109, 2001. [Pg.156]


See other pages where Poly dynamic is mentioned: [Pg.541]    [Pg.71]    [Pg.76]    [Pg.195]    [Pg.140]    [Pg.151]    [Pg.343]    [Pg.260]    [Pg.228]    [Pg.382]    [Pg.481]    [Pg.20]    [Pg.188]    [Pg.46]    [Pg.589]    [Pg.484]    [Pg.145]    [Pg.640]    [Pg.941]    [Pg.131]    [Pg.265]    [Pg.525]    [Pg.358]    [Pg.212]    [Pg.68]    [Pg.238]    [Pg.38]    [Pg.44]    [Pg.303]    [Pg.326]    [Pg.899]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Dynamics crystalline poly

Molecular dynamics, poly

Poly , dynamic contact between

Poly dynamic birefringence

Poly dynamic mechanical analysis

Poly dynamic mechanical properties

Poly dynamic structure factor

Poly solid-state dynamics

© 2024 chempedia.info