Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly containing polyesters using

Siloxane containing polyester, poly(alkylene oxide) and polystyrene type copolymers have been used to improve the heat resistance, lubricity and flow properties of epoxy resin powder coatings 43). Thermally stable polyester-polysiloxane segmented copolymers have been shown to improve the flow, antifriction properties and scratch resistance of acrylic based auto repair lacquers 408). Organohydroxy-terminated siloxanes are also effective internal mold release agents in polyurethane reaction injection molding processes 409). [Pg.74]

A fifth factor is certainly ease of preparation and in this characteristic the melt prepared thermotropic polymers are particularly favored. All of the polymers described thus far may be made in a conventional melt acidolysis process starting with the acetoxy derivatives of the hydroxyl containing monomers used. A typical polymerization scheme is shown in Figure 8, the preparation of the two component polyester derived from the acetylated hydroxybenzoic and hydroxynaphthoic acids. The polymerization may be carried out with or without added catalysts. The poly(ester-amides) commented on here, and the more recently reported aromatic, thermotropic poly(ester-carbonates) and poly(ester-imides), may all be synthesized in a similar manner. [Pg.247]

Poly(lactide-co-Z-caprolactone) is a derivative of polycaprolactone, which is a biodegradable polyester used in the synthesis of polyurethane polymers. Drachman et al. placed stents containing the polymer poly(lactide-co-Z-caprolactone) into pig vascular beds to study the effects of the stent on neointimal regrowth. They reported that the paclitaxel releasing stent was able to curtail vascular intimal regrowth and in-stent restenosis at all the time points they tested from 7 to 180 days [2]. However, in studies conducted in other animals it became apparent that arteries did not heal completely following stent-mediated release of paclitaxel [3],... [Pg.353]

Commonly used isocyanates are toluene dhsocyanate, methylene diphenyl isocyanate, and polymeric isocyanates. Polyols used are macroglycols based on either polyester or polyether. The former [poly(ethylene phthalate) or poly(ethylene 1,6-hexanedioate)] have hydroxyl groups that are free to react with the isocyanate. Most flexible foam is made from 80/20 toluene dhsocyanate (which refers to the ratio of 2,4-toluene dhsocyanate to 2,6-toluene dhsocyanate). High-resilience foam contains about 80% 80/20 toluene dhsocyanate and 20% poly(methylene diphenyl isocyanate), while semi-flexible foam is almost always 100% poly(methylene diphenyl isocyanate). Much of the latter reacts by trimerization to form isocyanurate rings. [Pg.1022]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

Phthahc anhydride (1) is the commercial form of phthaUc acid (2). The worldwide production capacity for the anhydride was ca 3.5 x 10 metric tons ia 1993, and it was used ia the manufacture of plasticizers (qv), unsaturated polyesters, and alkyd resins (qv) (see Polyesters, unsaturated). Sales of terephthahc acid (3) and its dimethyl ester are by far the largest of any of the benzenepolycarboxyhc acids 14.3 x 10 t were produced in 1993. This is 80% of the total toimage of ah. commercial forms of the benzenepolycarboxyhc acids. Terephthahc acid is used almost exclusively for the manufacture of poly(ethylene terephthalate), which then is formed into textiles, films, containers, and molded articles. Isophthahc acid (4) and trimehitic anhydride (5) are commercial products, but their worldwide production capacities are an order of magnitude smaller than for terephthahc acid and its dimethyl ester. Isophthahc acid is used primarily in the production of unsaturated polyesters and as a comonomer in saturated polyesters. Trimehitic anhydride is used mainly to make esters for high performance poly(vinyl chloride) plasticizers. Trimesic acid (6), pyromehitic dianhydride (7), and hernimehitic acid (8) have specialized commercial apphcations. The rest of the benzenepolycarboxyhc acids are not available commercially. [Pg.478]

Acrylic ESTER POLYMERS Acrylonitrile POLYMERS Cellulose esters). Engineering plastics (qv) such as acetal resins (qv), polyamides (qv), polycarbonate (qv), polyesters (qv), and poly(phenylene sulfide), and advanced materials such as Hquid crystal polymers, polysulfone, and polyetheretherketone are used in high performance appHcations they are processed at higher temperatures than their commodity counterparts (see Polymers containing sulfur). [Pg.136]

Small amounts of TAIC together with DAP have been used to cure unsaturated polyesters in glass-reinforced thermo sets (131). It has been used with polyfunctional methacrylate esters in anaerobic adhesives (132). TAIC and vinyl acetate are copolymerized in aqueous suspension, and vinyl alcohol copolymer gels are made from the products (133). Electron cure of poly(ethylene terephthalate) moldings containing TAIC improves heat resistance and transparency (134). [Pg.88]

Pyrotechnic mixtures may also contain additional components that are added to modify the bum rate, enhance the pyrotechnic effect, or serve as a binder to maintain the homogeneity of the blended mixture and provide mechanical strength when the composition is pressed or consoHdated into a tube or other container. These additional components may also function as oxidizers or fuels in the composition, and it can be anticipated that the heat output, bum rate, and ignition sensitivity may all be affected by the addition of another component to a pyrotechnic composition. An example of an additional component is the use of a catalyst, such as iron oxide, to enhance the decomposition rate of ammonium perchlorate. Diatomaceous earth or coarse sawdust may be used to slow up the bum rate of a composition, or magnesium carbonate (an acid neutralizer) may be added to help stabilize mixtures that contain an acid-sensitive component such as potassium chlorate. Binders include such materials as dextrin (partially hydrolyzed starch), various gums, and assorted polymers such as poly(vinyl alcohol), epoxies, and polyesters. Polybutadiene mbber binders are widely used as fuels and binders in the soHd propellant industry. The production of colored flames is enhanced by the presence of chlorine atoms in the pyrotechnic flame, so chlorine donors such as poly(vinyl chloride) or chlorinated mbber are often added to color-producing compositions, where they also serve as fuels. [Pg.347]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Some of the common types of plastics that ate used ate thermoplastics, such as poly(phenylene sulfide) (PPS) (see Polymers containing sulfur), nylons, Hquid crystal polymer (LCP), the polyesters (qv) such as polyesters that ate 30% glass-fiber reinforced, and poly(ethylene terephthalate) (PET), and polyetherimide (PEI) and thermosets such as diaHyl phthalate and phenoHc resins (qv). Because of the wide variety of manufacturing processes and usage requirements, these materials ate available in several variations which have a range of physical properties. [Pg.32]

As of 1992, the first specialty platable plastic, acrylonitrile—butadiene—styrene (ABS) terpolymer (see Acrylonitrile polymers, ABS resins), is used ia over 90% of POP appHcatioas. Other platable plastics iaclude poly(pheayleae ether) (see PoLYETPiERs), ayloa (see Polyamides), polysulfoae (see Polymers CONTAINING sulfur), polypropyleae, polycarboaate, pheaoHcs (see Pphenolic resins), polycarboaate—ABS alloys, polyesters (qv), foamed polystyreae (see Styrene plastics), and other foamed plastics (qv). [Pg.109]

Ethylene Glycol. Well over 50% of the ethylene oxide produced is used in the manufacture of ethylene glycol. Ethylene glycol [107-21-1] is used in two significant applications as a raw mateiial for poly (ethylene teiephthalate) for use in polyester fiber, film, and containers, and as an automotive... [Pg.465]


See other pages where Poly containing polyesters using is mentioned: [Pg.125]    [Pg.125]    [Pg.82]    [Pg.227]    [Pg.1]    [Pg.2]    [Pg.93]    [Pg.640]    [Pg.455]    [Pg.93]    [Pg.137]    [Pg.140]    [Pg.132]    [Pg.244]    [Pg.7178]    [Pg.23]    [Pg.587]    [Pg.2056]    [Pg.3997]    [Pg.236]    [Pg.266]    [Pg.151]    [Pg.44]    [Pg.348]    [Pg.140]    [Pg.184]    [Pg.151]    [Pg.378]    [Pg.361]    [Pg.148]    [Pg.292]    [Pg.477]    [Pg.31]    [Pg.52]    [Pg.192]    [Pg.339]    [Pg.416]   


SEARCH



Poly , use

Poly Polyester

Poly containing

Polyester containing

© 2024 chempedia.info