Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar groups, polymer

The introduction of monomers containing polar groups such as tertiary amines, imidazoles, pyrrolidones, pyridines, etc., gives the polymer dispersant properties that will be discussed in the article on dispersant additives for lubricants. [Pg.357]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

This article focuses on the commercial, ethylene-based ionomers and includes information on industrial uses and manufacture. The fluorinated polymers used as membranes are frequently included in ionomer reviews. Owing to the high concentration of polar groups, these polymers are generally not melt processible and are specially designed for specific membrane uses (see Fluorine compounds, organic—perfluoroalkane sulfonic acids Membrane technology). [Pg.404]

Isocyanates can be characterized using a strong absorption at 2300 — 2200 cm in the ir spectmm. The position of the absorbance is influenced by conjugation and neighboring polar groups. This method has been successfully used in both kinetic and post-mortem characterizations of many polyurethane polymers. [Pg.457]

Acetate fibers are dyed usually with disperse dyes specially synthesized for these fibers. They tend to have lower molecular size (low and medium energy dyes) and contain polar groups presumably to enhance the forces of attraction by hydrogen bonding with the numerous potential sites in the cellulose acetate polymer (see Fibers cellulose esters). Other dyes can be appHed to acetates such as acid dyes with selected solvents, and azoic or ingrain dyes can be apphed especially for black colorants. However thek use is very limited. [Pg.365]

Based on this variety of properties, amorphous polybutadiene has found a niche in the mbber industry. Moreover, it appears that the anionicaHy prepared polymer is the only polymer that can be functionalized by polar groups. The functionalization is done by using aromatic substituted aldehydes and ketones or esters. Functionalization has been reported to dramatically improve polymer-filler interaction and reduce tread hysteresis (70—73). [Pg.534]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start overlapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stabiUty that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stabihty, and its treatment dominated the colloid science Hterature for several decades. [Pg.199]

In the case of polar polymers the situation is more complex, since there are a large number of dipoles attached to one chain. These dipoles may either be attached to the main chain (as with poly(vinyl chloride), polyesters and polycarbonates) or the polar groups may not be directly attached to the main chain and the dipoles may, to some extent, rotate independently of it, e.g. as with poly(methyl methacrylate). [Pg.114]

When dipoles are directly attached to the chain their movement will obviously depend on the ability of chain segments to move. Thus the dipole polarisation effect will be much less below the glass transition temperature, than above it Figure 6.4). For this reason unplasticised PVC, poly(ethylene terephthalate) and the bis-phenol A polycarbonates are better high-frequency insulators at room temperature, which is below the glass temperature of each of these polymers, than would be expected in polymers of similar polarity but with the polar groups in the side chains. [Pg.114]

Figure 6.4. Power factor-temperature curves for three polar polymers whose polar groups are integral with or directly attached to the main chain. The rise in power factor above the glass transition point is clearly seen in these three examples... Figure 6.4. Power factor-temperature curves for three polar polymers whose polar groups are integral with or directly attached to the main chain. The rise in power factor above the glass transition point is clearly seen in these three examples...
Substituents on the a-carbon atom restrict chain flexibility but, being relatively small, lead to a significantly higher Tg than with polyethylene. Differences in the Tg s of commercial polymers (approx. 104°C), syndiotactic polymers (approx. 115°C) and anionically prepared isotactic polymers (45°C) are generally ascribed to the differences in intermolecular dipole forces acting through the polar groups. [Pg.405]

Because the polymer is polar it does not have electrical insulation properties comparable with polyethylene. Since the polar groups are found in a side chain these are not frozen in at the Tg and so the polymer has a rather high dielectric constant and power factor at temperatures well below the Tg (see also Chapter 6). This side chain, however, appears to become relatively immobile at about 20°C, giving a secondary transition point below which electrical insulation properties are significantly improved. The increase in ductility above 40°C has also been associated with this transition, often referred to as the 3-transition. [Pg.405]

Polarity. The increase in the polarity of the plasticizer (e.g. existence of polar groups, substitution of aryl groups by alkyl ones) reduces softening efficiency, worsens low-temperature properties of the plasticized polymers, improves solvation, and reduces extractability by aliphatic solvents. [Pg.627]

We have studied, by MD, pure water [22] and electrolyte solutions [23] in cylindrical model pores with pore diameters ranging from 0.8 to more than 4nm. In the nonpolar model pores the surface is a smooth cylinder, which interacts only weakly with water molecules and ions by a Lennard-Jones potential the polar pore surface contains additional point charges, which model the polar groups in functionalized polymer membranes. [Pg.369]

For some nonionic, nonpolar polymers, such as polyethylene glycols, normal chromatograms can be obtained by using distilled water. Some more polar nonionic polymers exhibit abnormal peak shapes or minor peaks near the void volume when eluted with distilled water due to ionic interactions between the sample and the charged groups on the resin surface. To eliminate ionic interactions, a neutral salt, such as sodium nitrate or sodium sulfate, is added to the aqueous eluent. Generally, a salt concentration of 0.1-0.5 M is sufficient to overcome undesired ionic interactions. [Pg.112]

It is well known that pMMA and pSty in THF follow ideal GPC behavior on many common GPC columns. However, many commercially important acrylate polymers contain a wide array of other monomers. In general, acrylic polymers composed of monomers that do not contain polar groups will yield well-behaved polymers, giving ideal GPC separations. Monomers that contain polar groups should prompt the analyst to carefully evaluate the possibility of adsorption of the analyte onto the column. The most common functionalities of concern are hydroxyl groups, amine groups, ethylene oxide units, and carboxylic acids. In many cases, such monomers can be tolerated. However, the acceptable level can vary considerably with even apparently minor changes in... [Pg.542]

Polar compounds present the most problems because of their low breakthrough volumes with common sorbents. In the last few years, highly crosslinked polymers have become commercially available which involve higher retention capacities for the more polar analytes (37, 38). Polymers have also been chemically modified with polar groups in order to increase the retention of the compounds previously mentioned (35, 37). [Pg.345]

Chemically modified polymers have been used to determine polar compounds in water samples (37, 71). Chemical modification involves introducing a polar group into polymeric resins. These give higher recoveries than their unmodified analogues for polar analytes. This is due to an increase in surface polarity which enables the aqueous sample to make better contact with the surface of the resin (35). [Pg.357]


See other pages where Polar groups, polymer is mentioned: [Pg.351]    [Pg.254]    [Pg.476]    [Pg.533]    [Pg.242]    [Pg.426]    [Pg.5]    [Pg.99]    [Pg.349]    [Pg.353]    [Pg.351]    [Pg.62]    [Pg.62]    [Pg.127]    [Pg.132]    [Pg.133]    [Pg.570]    [Pg.410]    [Pg.490]    [Pg.493]    [Pg.496]    [Pg.511]    [Pg.551]    [Pg.557]    [Pg.1013]    [Pg.369]    [Pg.141]    [Pg.328]    [Pg.331]    [Pg.332]    [Pg.522]   
See also in sourсe #XX -- [ Pg.73 , Pg.104 , Pg.119 , Pg.125 , Pg.137 , Pg.152 , Pg.178 , Pg.191 , Pg.206 , Pg.374 ]




SEARCH



Group polarization

Polar groups

Polarizing groups

Polymer group

Polymers polar

Polymers polarization

© 2024 chempedia.info