Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum-silica-alumina catalyst isomerization

Fio. 3. Isomerization of 2-methyIbioyclo[2.2.1]heptane (12) at 250 , vapor phase, in the presence of platinum-silica-alumina catalyst. [Pg.442]

Polyaromatics react under hydrocracking conditions to undergo partial or complete saturation of the aromatic rings, together with isomerization and cracking of intermediate and perhydro products. Phenanthrene, for example, can lead to tetralin and methyl cyclohexane as the principal products. With a platinum/ silica-alumina catalyst,67 the major products are isomerized perhydrophenan-threnes, which includes some adamantanes and cracked products, the total number of products exceeding 100. [Pg.257]

From this beginning, an extensive study of the isomerization of n-heptane was made with platinum on silica-alumina catalysts. Figure 2 shows curves plotted from the data obtained illustrating the total isomer yield versus conversion and the temperatures that produced these conversions. The conversion-isomer yield curve follows closely the 45° theoretical yield line, goes through a maximum at about 65% isomer yield, and then drops sharply because of cracking. The temperature at which the maximum yield of isomers was obtained was about 660° F. [Pg.80]

This mechanistic interpretation is based on the assumption that, once formed, five- or six-membered products of dehydrocyclization do not undergo interconversion. As discussed above, isomerizations are extremely slow at 317°C for tetralin to methylindan and methylindan to tetralin over alumina, silica-alumina, platinum-on-alumina, and platinum-on-silica-alumina catalysts (22, 23). [Pg.309]

In contrast, we shall see that in a paraflhi isomerization system a platinum on silica-alumina catalyst is a multifunctional, specifically, a hifunc-tional catalyst the platinum sites catalyze distinctly different reactions and reaction steps than do the silica-alumina sites neither catalyze the reactions of the other component furthermore, both tj ies of reactions are relevant to accomplish the over-all reactions of the desired conversion system. [Pg.139]

The hydroisomerization reaction is not only of industrial importance but is also of theoretical interest. The catalysts reported for this reaction consist of a hydrogenation component, such as nickel, platinmn, etc, deposited on acidic supports, such as silica-alumina ) or platinum on alumina containing halogen 2). A detailed study of the hydroisomerization reaction as a function of catalyst composition and experimental conditions has been reported ). Ciapetta (3a) studied the hydroisomerization of ethylcyclohexane over nickel on silica-alumina catalyst and reported that isomerization was the primary reaction and that the isomers consisted of dimethylcyclohexanes and of trimethylcyclopentanes. The dimethylcyclo-hexanes were stated to be composed of the 1,1- and 1,2-dimethylcyclo-hexanes, the latter predominating, and possibly of small amounts of 1,3-and 1,4-dimethylcyclohexanes. [Pg.569]

Isomerization of alkylcyclopentanes may also occur on the platinum catalyst surface or on the silica/alumina. For example, methylcyclopen-tane isomerizes to cyclohexane ... [Pg.66]

Pentafining A process for isomerizing pentane in a hydrogen atmosphere, using a platinum catalyst supported on silica-alumina. Developed by the Atlantic Richfield Company. [Pg.207]

In hydrocarbon reforming processes the vapour of an alkane is passed over a supported metal catalyst such as platinum on silica or alumina. Dehydrocyclization, isomerization and cracking reactions all take place to... [Pg.513]

Licensors offer a variety of catalysts to promote the isomerization— silica alumina by itself or enhanced with a noble metal like platinum or a non-noble metal like chromium. Another uses hydrofluoric acid with boron trifluoride In the case of the noble metal catalytic process, the feed enters a vessel with a fixed catalyst bed at 850°F and 14.5 psi. As is often the case, a small amount of hydrogen is present to reduce the amount of coke laying down on the catalyst. The effluent is processed in a standard fashion to separate the hydrogen, the para- and ortho-xylene, and any unreacted or miscellaneous compounds. Yields of para-xylene are in the 70% range. [Pg.51]

Several years ago, one of the authors found that nickel, platinum, and some other hydrogenating agents, when deposited on fresh synthetic silica-alumina cracking catalyst, made a new catalyst that would isomerize paraffin and naphthene hydrocarbons in the presence of hydrogen at elevated pressures and nominal temperatures. Table I shows some early typical results calculated from mass spectrometer analyses of the products obtained by passing methyl cyclopentane, cyclohexane, and n-hexane over a catalyst composed of 5% nickel in silica-alumina at the indicated reaction conditions. Isomerization of a number of other hydrocarbons has also been studied and reported elsewhere (2). [Pg.80]

Dual-function catalysts possessing both metallic and acidic sites bring about more complex transformations. Carbocationic cyclization and isomerization as well as reactions characteristic of metals occurring in parallel or in subsequent steps offer new reaction pathways. Alternative reactions may result in the formation of the same products in various multistep pathways. Mechanical mixtures of acidic supports (silica-alumina) and platinum gave results similar to those of platinum supported on acidic alumina.214,215 This indicates that proximity of the active sites is not a requirement for bifunctional catalysis, that is, that the two different functions seem to operate independently. [Pg.54]

In the presence of hydrogen the isomerization of paraffins of five or more carbon atoms over dual function catalysts, such as amorphous silica-alumina supported platinum, can be described by the following scheme ... [Pg.528]

Fig. 2. Isomerization of n-heptane over mixtures of particles of silica-alumina and particles of inert-supported platinum (W5). The dashed lines represent conversions over platinum-impregnated silica-alumina. Conditions of runs 25 atm., Hj/nC = 4/1, space velocity = 0.7 g. nC7 per hour per gram of catalyst. Fig. 2. Isomerization of n-heptane over mixtures of particles of silica-alumina and particles of inert-supported platinum (W5). The dashed lines represent conversions over platinum-impregnated silica-alumina. Conditions of runs 25 atm., Hj/nC = 4/1, space velocity = 0.7 g. nC7 per hour per gram of catalyst.
All side-chain isomers are formed in acid-catalyzed isomerization. Carbonium ions are the intermediates here. Over dual-function catalysts, such as platinum-on-alumina and platinum-on-silica-alumina, platinum increases the rate of isomerization by dehydrogenating alkanes to olefins. This facilitates the formation of carbonium ions. [Pg.310]

Pentafining a pentane isomerization process using a regenerable platinum catalyst on a silica-alumina support and requiring outside hydrogen. [Pg.447]

A number of hydrocarbon transformations have been shown by Haensel and Donaldson 10), Heinemann et al. 11), and by Ciapetta and Hunter 12) to be catalyzed by solid catalysts in which a transition metal, notably platinum or nickel, has been combined with an acidic oxide carrier substance such as, for example, silica-alumina, or halogen containing alumina. These include the isomerization of paraffins, the hydroisomerization of naphthene rings, and the hydrogenative cracking of paraflBns. [Pg.157]

Figure 11 shows conversion to iso-heptanes to be negligible for (0.5 wt. %) platinum supported on activated carbon (Pt/C) as the only catalyst, and also for (0.4 wt. %) platinum on silica-gel (Pt/Si02). No detectable conversion was obtained with silica-alumina. A mechanical mixture of either of the Pt-bearing particles with silica-alumina of about 150 m.Vg-surface area, both in millimeter diameter particle size (1000m), immediately resulted in appreciable isomerization ( SiAl with Pt/C SiAl with Pt/Si02). Isomerization increases rapidly for smaller component particle sizes, of 70/i and S i diameters. It approaches the performance of a silica-alumina that has been directly impregnated with platinum, and which has... [Pg.160]

S. J. Miller (Chevron) published results from early work that highlighted the selectivity of the platinum form of SAPO-11 catalyst compared to a number of others. These others were amorphous silica-alumina, from which one would expect little or no selectivity, ZSM-5, HY, and Na-Beta zeolites. All the catalysts carried 1 wt. % platinum and the feed employed was n-octane. He found that at 30% conversion, only SAPO-11, the amorphous silica-alumina, and the HY catalysts exhibited better than 94% selectivity for feed isomerization to isooctanes. ZSM-5 and Na-Beta catalysts behaved poorly in this regard. Selectivity for dimethylhexanes was low. SAPO-11 also produced equal quantities of 2- and 3-methyl heptanes, whereas the other catalysts favored 3-methyl heptane, with a ratio close to that favored by thermodynamics. SAPO-11 also produced one of the lowest levels of doubly-branched hexanes (Table 10.1646) and the predominant ones formed were those separated by more than one carbon—only minor amounts of the less thermally stable (bond breaking here can produce tertiary carbonium ions) geminal-dimethyl (2,2 and 3,3-) ones were formed. Noble metal presence was a key to success since replacement of the hydrogenation metal platinum by pallodium did not alter the isomeri-zation selectivity much, but replacement by nickel led to very poor isomerization. [Pg.322]

The early sihca/alumina catalysts for the isomerization of xylene suffered from deactivation due to the deposition of carbon and the needed frequent regeneration. The process was improved by both the use of catalysts impregnated with platinum and the addition of hydrogen to the reactants, and thrrs led to a reduction in the need for frequent regeneration. These catalysts also converted ethyl benzene to xylenes. High-silica zeolites are now used to produce most of the />-xylene obtained by isomerization, because high selectivity can be achieved of equilibrium conversion. Mobil ZSM-5 is particularly useful because the pore size promotes paraselectivity and controls the unwanted disproportionation reac-... [Pg.293]

Conventional hydrocracking takes places over a bifunctional catalyst with acid sites to provide isomerization/cracking function and metal sites with hydrogenation-dehydrogenation function. Platinum, palladium, or bimetallic systems (ie, NiMo, NiW, and CoMo in the sulfided form) supported on oxidic supports (eg, silica-aluminas and zeolites) are the most commonly used catalysts, operating at high pressures, typically over 10 MPa, and temperatures above 350°C. [Pg.568]

A large number of heterogeneous catalysts have been tested under screening conditions (reaction parameters 60 °C, linoleic acid ethyl ester at an LHSV of 30 L/h, and a fixed carbon dioxide and hydrogen flow) to identify a suitable fixed-bed catalyst. We investigated a number of catalyst parameters such as palladium and platinum as precious metal (both in the form of supported metal and as immobilized metal complex catalysts), precious-metal content, precious-metal distribution (egg shell vs. uniform distribution), catalyst particle size, and different supports (activated carbon, alumina, Deloxan , silica, and titania). We found that Deloxan-supported precious-metal catalysts are at least two times more active than traditional supported precious-metal fixed-bed catalysts at a comparable particle size and precious-metal content. Experimental results are shown in Table 14.1 for supported palladium catalysts. The Deloxan-supported catalysts also led to superior linoleate selectivity and a lower cis/trans isomerization rate was found. The explanation for the superior behavior of Deloxan-supported precious-metal catalysts can be found in their unique chemical and physical properties—for example, high pore volume and specific surface area in combination with a meso- and macro-pore-size distribution, which is especially attractive for catalytic reactions (Wieland and Panster, 1995). The majority of our work has therefore focused on Deloxan-supported precious-metal catalysts. [Pg.231]

Commercial zeolite based hydroisomerization catalysts comprise alumina bound and platinum impregnated dealuminated mordenite. The activity and selectivity of the hydroisomerization of n-paraffins is strongly influenced by acid leaching. The influence of silica to alumina ratio has been studied for pentane isomerization over platinum mordenite many times since one of the first papers published (6). [Pg.160]

For 1-hexene isomerization and for acid catalyzed Cg aromatic reactions all molecular sieves were evaluated in their calcined, powdered state. For the study of Cg aromatics, selected SAPO molecular sieves were aluminum exchanged or steam treated as noted in Table IV. For bifunctional catalysts used in paraffin cyclization/isomerization and ethylbenzene-xylene interconversions, the calcined molecular sieve powder was mixed with platinum-loaded chlorided gamma alumina powder. These mixtures were then bound using silica sol and extruded to form 1/16" extrudates which were dried and calcined at 500°C. The bifunctional catalysts were prepared to contain about 0.54 platinum and about 40 to 504 SAPO molecular sieve in the finished catalysts. [Pg.514]

The choice of an appropriate support is of no less importance than that of active phase of a catalyst. We have focused our attention on the application of hydrophobic supports to prepare effective platinum catalysts for hydrosilylation since our preliminary experiments have shown that in a number of hydrosilylation reactions hydrophobic material-supported catalysts appeared to be superior to those based on hydrophilic supports such as alumina and silica. We have also aimed at selecting such supports which, in addition to their hydrophobicity, do not have acid centers on their surfaces, and due to this, they do not catalyze undesirable side reactions of isomerization. The supports selected for our study were styrene-divinylbenzene copolymer (SDB) and fluorinated carbon (FC), because nonfunctionalized SDB is free of acid sites and surface acidity of FC is extremely weak (H 9). The performance of SDB- and FC-supported platinum catalysts was studied in several reactions of hydrosilylation. [Pg.225]


See other pages where Platinum-silica-alumina catalyst isomerization is mentioned: [Pg.48]    [Pg.193]    [Pg.330]    [Pg.507]    [Pg.78]    [Pg.37]    [Pg.306]    [Pg.845]    [Pg.159]    [Pg.165]    [Pg.342]    [Pg.1369]    [Pg.46]    [Pg.53]    [Pg.283]    [Pg.507]    [Pg.65]    [Pg.751]    [Pg.805]    [Pg.155]    [Pg.325]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Alumina-platinum

Isomerization Alumina

Isomerization catalysts

Platinum-alumina catalyst

Silica-alumina

Silica-alumina catalyst

Silica-alumina catalysts catalyst

© 2024 chempedia.info