Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum catalyst poisoning

Poisoning curve for a platinum catalyst, poisoned by mercury ions, in the decomposition of hydrogen peroxide. [Pg.159]

Catalytic reduction over a platinum catalyst fails because of poisoning of the catalyst (101). [Pg.535]

R SiH and CH2= CHR interact with both PtL and PtL 1. Complexing or chelating ligands such as phosphines and sulfur complexes are exceUent inhibitors, but often form such stable complexes that they act as poisons and prevent cute even at elevated temperatures. Unsaturated organic compounds are preferred, such as acetylenic alcohols, acetylene dicarboxylates, maleates, fumarates, eneynes, and azo compounds (178—189). An alternative concept has been the encapsulation of the platinum catalysts with either cyclodextrin or in thermoplastics or siUcones (190—192). [Pg.48]

Catalytic Oxidation. Catalytic oxidation is used only for gaseous streams because combustion reactions take place on the surface of the catalyst which otherwise would be covered by soHd material. Common catalysts are palladium [7440-05-3] and platinum [7440-06-4]. Because of the catalytic boost, operating temperatures and residence times are much lower which reduce operating costs. Catalysts in any treatment system are susceptible to poisoning (masking of or interference with the active sites). Catalysts can be poisoned or deactivated by sulfur, bismuth [7440-69-9] phosphoms [7723-14-0] arsenic, antimony, mercury, lead, zinc, tin [7440-31-5] or halogens (notably chlorine) platinum catalysts can tolerate sulfur compounds, but can be poisoned by chlorine. [Pg.168]

The precious-metal platinum catalysts were primarily developed in the 1960s for operation at temperatures between about 200 and 300°C (1,38,44). However, because of sensitivity to poisons, these catalysts are unsuitable for many combustion apphcations. Variations in sulfur levels of as Httle as 0.4 ppm can shift the catalyst required temperature window completely out of a system s operating temperature range (44). Additionally, operation withHquid fuels is further compHcated by the potential for deposition of ammonium sulfate salts within the pores of the catalyst (44). These low temperature catalysts exhibit NO conversion that rises with increasing temperature, then rapidly drops off, as oxidation of ammonia to nitrogen oxides begins to dominate the reaction (see Fig. 7). [Pg.511]

The discussion in the previous section suggests that adsorption of pyridine on the catalyst is a necessary prerequisite for the formation of 2,2 -bipyridine but as platinum catalysts, which are poisoned by... [Pg.193]

Using a platinum catalyst, this reaction can now be carried out at temperatures as low as 40°C. The hydrogen used must be very pure traces of carbon monoxide can poison the catalyst. [Pg.502]

A sophisticated quantitative analysis of experimental data was performed by Voltz et al. (96). Their experiment was performed over commercially available platinum catalysts on pellets and monoliths, with temperatures and gaseous compositions simulating exhaust gases. They found that carbon monoxide, propylene, and nitric oxide all exhibit strong poisoning effects on all kinetic rates. Their data can be fitted by equations of the form ... [Pg.91]

Oxidation kinetics over platinum proceeds at a negative first order at high concentrations of CO, and reverts to a first-order dependency at very low concentrations. As the CO concentration falls towards the center of a porous catalyst, the rate of reaction increases in a reciprocal fashion, so that the effectiveness factor may be greater than one. This effectiveness factor has been discussed by Roberts and Satterfield (106), and in a paper to be published by Wei and Becker. A reversal of the conventional wisdom is sometimes warranted. When the reaction kinetics has a negative order, and when the catalyst poisons are deposited in a thin layer near the surface, the optimum distribution of active catalytic material is away from the surface to form an egg yolk catalyst. [Pg.100]

Platinum is the only acceptable electrocatalyst for most of the primary intermediate steps in the electrooxidation of methanol. It allows the dissociation of the methanol molecule hy breaking the C-H bonds during the adsorption steps. However, as seen earlier, this dissociation leads spontaneously to the formation of CO, which is due to its strong adsorption on Pt this species is a catalyst poison for the subsequent steps in the overall reaction of electrooxidation of CHjOH. The adsorption properties of the platinum surface must be modified to improve the kinetics of the overall reaction and hence to remove the poisoning species. Two different consequences can be envisaged from this modification prevention of the formation of the strongly adsorbed species, or increasing the kinetics of its oxidation. Such a modification will have an effect on the kinetics of steps (23) and (24) instead of step (21) in the first case and of step (26) in the second case. [Pg.82]

On the surface of metal electrodes, one also hnds almost always some kind or other of adsorbed oxygen or phase oxide layer produced by interaction with the surrounding air (air-oxidized electrodes). The adsorption of foreign matter on an electrode surface as a rule leads to a lower catalytic activity. In some cases this effect may be very pronounced. For instance, the adsorption of mercury ions, arsenic compounds, or carbon monoxide on platinum electrodes leads to a strong decrease (and sometimes total suppression) of their catalytic activity toward many reactions. These substances then are spoken of as catalyst poisons. The reasons for retardation of a reaction by such poisons most often reside in an adsorptive displacement of the reaction components from the electrode surface by adsorption of the foreign species. [Pg.534]

Once the reaction conditions have been decided upon, the feed preparation steps and product purification steps must be determined. The designer must decide how much of which compounds must be removed from the feed and product streams. The latter has already been set by the product composition specified in the scope. The former is often determined by how the impurities affect the reaction. For instance, when platinum catalysts are used all sulfur and heavy metals must be removed or this very expensive catalyst will be poisoned. [Pg.80]

The literature on the hydrogenation of aniline and substituted anilines suggests that the amine functionality can act as a poison [3, 4, 12 and 13] especially over platinum catalysts. The more basic the nitrogen the more... [Pg.81]

In technical hydrocarbon reforming processes using platinum catalysts, high hydrogen pressures are usually used to inhibit catalyst poisoning and coke formation as far as possible, for instance a total pressure of several atmospheres to several tens of atmospheres, with a several-fold excess of hydrogen in the reactant mixture. [Pg.28]

The PEMFCs require expensive polymer membrane (e.g., Nation ), and operate at a low temperature (e.g., 80°C). Although low temperature reduced the cost of material, the heat generated at low temperatures is more difficult to remove. Alternate proton conducting membranes (e.g., inorganic polymer composites) that will operate at a high temperature (e.g., 200°C) are required. The expensive platinum catalyst used for electrochemical reactions can be poisoned by even trace amounts of carbon monoxide in the hydrogen fuel stream. Hence, a more tolerant catalyst material needs to be developed. [Pg.28]

Nitric acid synthesis, platinum-group metal catalysts in, 19 621 Nitric acid wet spinning process, 11 189 Nitric oxide (NO), 13 791-792. See also Nitrogen oxides (NOJ affinity for ruthenium, 19 638—639 air pollutant, 1 789, 796 cardioprotection role, 5 188 catalyst poison, 5 257t chemistry of, 13 443—444 control of, 26 691—692 effect on ozone depletion, 17 785 mechanism of action in muscle cells, 5 109, 112-113 oxidation of, 17 181 in photochemical smog, 1 789, 790 reduction with catalytic aerogels, l 763t, 764... [Pg.623]

The production of sulphuric acid by the contact process, introduced in about 1875, was the first process of industrial significance to utilize heterogeneous catalysts. In this process, SO2 was oxidized on a platinum catalyst to S03, which was subsequently absorbed in aqueous sulphuric acid. Later, the platinum catalyst was superseded by a catalyst containing vanadium oxide and alkali-metal sulphates on a silica carrier, which was cheaper and less prone to poisoning. Further development of the vanadium catalysts over the last decades has led to highly optimized modem sulphuric acid catalysts, which are all based on the vanadium-alkali sulphate system. [Pg.312]

Catalyst poisoning. The more or less permanent deactivation of a catalyst by chemical reaction with a contaminant. Sulfur will poison platinum catalysts vanadium will poison zeolyte catalysts. [Pg.395]

Figure 12. Transient HCN yield over platinum catalysts. A and B represent one experiment (Exp. 1) in which a sulfur-poisoned catalyst was regenerated on admission of 1% O2 into the inlet gas mixture between times t, and C shows the resistance of the catalyst to poisoning by SO when oxygen is simultaneously present in the inlet gas mixture. At t only oxygen is removed from the inlet gas mixture. (See Ref. 16 for details.)... Figure 12. Transient HCN yield over platinum catalysts. A and B represent one experiment (Exp. 1) in which a sulfur-poisoned catalyst was regenerated on admission of 1% O2 into the inlet gas mixture between times t, and C shows the resistance of the catalyst to poisoning by SO when oxygen is simultaneously present in the inlet gas mixture. At t only oxygen is removed from the inlet gas mixture. (See Ref. 16 for details.)...
The second, which passes through a dimetallacyclopentane type intermediate [87], requires the presence of adjacent platinum atom assemblies. The mechanism should consequently be strongly inhibited by platinum site isolahon, due to tin addition or to catalyst poisoning by carbon. [Pg.127]


See other pages where Platinum catalyst poisoning is mentioned: [Pg.23]    [Pg.158]    [Pg.159]    [Pg.159]    [Pg.54]    [Pg.55]    [Pg.23]    [Pg.158]    [Pg.159]    [Pg.159]    [Pg.54]    [Pg.55]    [Pg.206]    [Pg.174]    [Pg.97]    [Pg.106]    [Pg.224]    [Pg.551]    [Pg.1003]    [Pg.182]    [Pg.365]    [Pg.27]    [Pg.402]    [Pg.71]    [Pg.309]    [Pg.484]    [Pg.83]    [Pg.25]    [Pg.482]    [Pg.248]    [Pg.64]   
See also in sourсe #XX -- [ Pg.455 ]

See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Catalyst poison

Catalysts catalyst poisoning

Catalysts poisoning

Oxygen poisoning, platinum catalysts

Oxygen poisoning, platinum catalysts alcohols

Platinum Catalyst Poisoning by Traces of Co in the Hydrogen

Platinum catalyst poison with

Platinum catalyst poison with below

Platinum catalysts sulfur poisoning

Poisoned catalysts

Poisoning of platinum catalysts

Poisoning of the platinum catalyst

Poisoning platinum

© 2024 chempedia.info