Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hemicellulose plant cell walls

Hemicelluloses are non-cellulosic and short-branched chain heteropolysaccharides, which consist of various different sugar units. They can be arranged in different proportions and with different substituents. Large amounts of hemicelluloses with a wide variation in content and chemical structure are found in plant cell walls. Hemicelluloses generally consist of several populations of polysaccharide molecules, varying in structural characteristics. Several fractionation techniques have been employed in order to obtain more homogeneous fractions as well as exploring structure-property relationships for the hemicellulosic polymers. ... [Pg.179]

Hemicellulose, which is a highly branched polysaccharide in contrast to linear cellulose, is located attached to the cellulose in plant cell walls. Hemicellulose, such as ara-binoxylans, is not a form of cellulose but is another group of polysaccharides [3]. Being... [Pg.489]

Plant cell wall polysaccharides are the main organic compounds found in nature. They are divided into three groups cellulose, hemicelluloses, and pectic substances (IJ)- Cellulose is a linear and long homopolymer consisting of 1,4-linked P-D-glucopyranosyl residues. Its main function is to ensure the rigidity of the plant cell wall. Hemicelluloses constitute the second most abundant plant material after cellulose. They are highly hydroscopic and have an influence on the flexibility of cell walls. [Pg.293]

Hemicellulose [9034-32-6] is the least utilized component of the biomass triad comprising cellulose (qv), lignin (qv), and hemiceUulose. The term was origiaated by Schulze (1) and is used here to distinguish the nonceUulosic polysaccharides of plant cell walls from those that are not part of the wall stmcture. Confusion arises because other hemicellulose definitions based on solvent extraction are often used in the Hterature (2—4). The term polyose is used in Europe to describe these nonceUulosic polysaccharides from wood, whereas hemicellulose is used to describe the alkaline extracts from commercial pulps (4). The quantity of hemicellulose in different sources varies considerably as shown in Table 1. [Pg.29]

Glucomannans (GM) and galactoglucomannans (GGM), common constituents of plant cell walls, are the major hemicellulosic components of the secondary cell walls of softwoods, whereas in the secondary cell walls of hardwoods they occur in minor amounts. They are suggested to be present together with xylan and fucogalactoxyloglucan in the primary cell walls of higher plants [192]. These polysaccharides were extensively studied in the 1960s [6,193]. [Pg.26]

Kacurakova, M., Capek, P., Sasinkova, V., WeUner, N. Ebringerova, A. (2000). FT-IR study of plant cell wall model compounds pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, Vol. 43,2, (October 2000), pp. (195-203), ISSN 0144-8617... [Pg.81]

The ability of PO to interact with the acetyl residues of chitin allows us to compare them with monovalent lectins (i.e. extensins) which when binding with hemicellulose are only affected in a medium with a high ionic strength (Brownleader et al., 2006). As a rule, POs are bound with the plant cell wall and act as its modifiers. Some POs can form complexes with an extensin of cell walls (Brownleader et al., 2006). Consequently, chitin-specific sites that are capable of interacting with polysaccharides exist in the molecules of PO, and these sites can resemble the membrane receptor binding sites or else be similar to the domains of heparinbinding proteins (Kim et al., 2001). [Pg.212]

In the absence of suitable cell wall mutants, DCB-adapted tomato cells provide an opportunity to characterise the pectin network of the plant cell wall. It should be noted that synthesis and secretion of hemicellulose is not inhibited but, in the absence of a cellulose framework for it to stick to, most of the xyloglucan secreted remains in soluble form in the cells culture medium (9, 10) while other non-cellulosic polysaccharides and other uronic-acid-rich polymers predominate in the wall. [Pg.95]

The galacturonic acids of a plant cell wall mainly belong to smooth chains of homopolygalacturonic acid (PGA) and to hairy regions of rhamnogalacturonan I (RGI). In green plants, other uronic acids can be found in hemicelluloses. Provided they are not methylesterified, all these carboxylic acids deprotonate at the more or less acidic pH of wall water. The electrostatic charges of these polyanions are then compensated by cations ultimately derived from the environment. [Pg.135]

Plant cell walls provide the obvious functions of stmctural support and integrity and can vary tremendously in size, shape, composition and stmcture depending on cell type, age and function within the plant body. Despite this diversity, plant cell walls are composed of only three major classes of polysaccharides cellulose, hemicellulose and pectins. Pectins, or polyuronides, are imbedded throughout the cell wall matrix and are particularly abundant in the middle lamella region. Pectins generally account for 10-30% of the cell wall dry weight and... [Pg.247]

The plant cell wall is a polymeric mesh consisting of cellulose, hemicellulose, pectin and protein. Cellulose and hemicellulose are integral components of the cell wall, but pectic substances are located mainly in the outer wall regions within the middle lamella (McNeil et ai, 1984). Pectic substances are more susceptible to enzymatic degradation, because they are more exposed than other cell wall components. Therefore, pectin-degrading enzymes may play a central role in the penetration of plant tissue by bacteria. [Pg.378]

Plant cell walls are constructed from cellulose, hemicelluloses, and pectins with varying amounts of lignin, tannins, gums, proteins, minerals,... [Pg.106]

The components of the plant cell wall (8-21) are the middle lamella (intercellular substance), the primary wall, and the secondary wall. The middle lamella is the pectic layer between cells and holds adjoining cells together as do membrane carbohydrates. The primary wall is thin (1-3 pm) and flexible containing cellulose, hemicelluloses, pectins, and glycoproteins. This wall provides mechanical strength, maintains cell shape,... [Pg.19]

For monitoring the extent of polysaccharide hydrolysis, l.c. methods that sepeu ate and analyze the non-fermentable oligosaccharides (d.p. 3-30) derived from cellulose, hemicellulose, and pectins are useful, and have already been described (see Section III,l,c). For determination of the monosaccharide composition of completely hydrolyzed, plant polysaccharides, l.c. is especially useful and has been applied to the compositional analysis of hydrolyzed plant fiber,wood pulps,plant cell-walls,and cotton fibers.In these representative examples, the major sugars of interest, namely, glucose, xylose, galactose, arabinose, and mannose, have traditionally been difficult to resolve by l.c. The separa-... [Pg.52]

Xylans are the major hemicelluloses of many plant materials, where they often contribute to the rigidity of plant cell walls. Most xylans are heteropolysaccharides with a homopolymeric backbone chain of 1,4-linked j8-D-xylo-pyranose units. The degree and t pe of substitution of the backbone is dependent on the plant origin of a xylan. In addition to xylose, xylans may contain L-arabinose, D-glucuronic acid or its 4-O-methyl ether, and acetic, p-coumaric, and ferulic acids. [Pg.426]

Lignin is found in plant cell walls of supporting and conducting tissue, mostly the trac-heids and vessel parts of the xylem. It is largely found in the thickened secondary wall but can occur elsewhere close to the celluloses and hemicelluloses. [Pg.294]

Plant cell walls are complex, heterogeneous structures composed mainly of polymers, such as cellulose, hemicelluloses, and lignins. In spite of several decades of research, cell wall assembly and the biosynthesis and ultimate biodegradative pathways of individual polymers are still far from being fully understood. One simple example will suffice Even today, no enzyme capable of catalyzing cellulose formation in vitro has been obtained. [Pg.1]

This is based on the method by Van Soest and Wine (1967) which has been modified according to subsequent recommendations. It is the only fibre determination suitable for non-ruminants. The residue consists of the plant cell-wall constituents cellulose, hemicellulose, lignin, cutin, NDF-insoluble tannin and ash. See the article by Cherney (2000) for current modifications these include the use of amylase to aid in the removal of starch from forages containing grain (Van Soest et al., 1991), which has been adopted by MAFF... [Pg.133]

Darvill, J. E., McNeil, M., Darvill, A. G., Albersheim, P. (1980). Structure of plant cell walls XL Glucuronoarabi-noxylan. A second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol, 66,1135-1139. [Pg.77]

Xylanases act on the P-l,4-linked xylan, the most abundant of the hemicelluloses that constitutes over 30% of the dry weight of terrestrial plants.116 They resemble cellulases and cooperate with cellulases and xylosidases117 in digestion of plant cell walls.110116118-121 Galactanase digests the P-l,4-linked component of pectins.122... [Pg.602]

Dietary Fiber. Dietary fiber is a broad term that encompasses the indigestible carbohydrate and carbohydrate-like components of foods that are found predominantly in plant cell walls (see Carbohydrates). It includes cellulose lignin, hemicelluloses. pentosans, gums, and pectins. [Pg.670]

The standard procedure by Saeman et al. (I) involves manual stirring of the polysaccharide with 72% H2S04, standing at 30°C, and secondary hydrolysis at 100° or 120°C in a steam autoclave. While certain resistant polysaccharides are still incompletely depolymerized, decomposition of the more sensitive monosaccharides formed cannot be avoided. An alternative method by using trifluoroacetic acid was applied successfully for plant cell wall polysaccharides by Albersheim et al. (2) and for dissolving pulps and hemicelluloses by Fengel et al. (3). Highly crystalline cellulose was not well dissolved and not completely hydrolyzed by CFsCOOH. [Pg.161]


See other pages where Hemicellulose plant cell walls is mentioned: [Pg.14]    [Pg.33]    [Pg.63]    [Pg.203]    [Pg.215]    [Pg.667]    [Pg.693]    [Pg.20]    [Pg.42]    [Pg.8]    [Pg.8]    [Pg.271]    [Pg.451]    [Pg.456]    [Pg.304]    [Pg.1]    [Pg.203]    [Pg.620]    [Pg.38]    [Pg.181]    [Pg.21]    [Pg.11]    [Pg.307]    [Pg.177]    [Pg.1150]    [Pg.1150]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Cell wall hemicellulose

Cell walls hemicelluloses

Hemicellulose

Hemicelluloses

Plant cell

Plant walls

Plants cell walls

© 2024 chempedia.info