Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical analysis methods

Interest in the elemental composition of aerosol particles arises from concerns about health effects and the value of these elements to trace the sources of suspended particles. The following physical analysis methods have been applied for the elemental measurements of aerosol samples. A schematic drawing of an x-ray fluorescence system is presented in Fig. 13.42. [Pg.1291]

Analytical Methods. Many chemical and physical analysis methods exist to characterize particulate matter collected on a substrate. Though several methods are multi-species, able to quantify a number of chemical components simultaneously, no single method is sufficient to both quantify the maiorlty of the collected particulate matter mass and those components which serve to Identify and quantify source contributions. [Pg.101]

Comprehensive reviews of different techniques for epoxy cure monitoring are available (86,94). Wet chemical or physical analysis methods, such as solvent swell (163), titration of functional groups, IR, near IR (164), or NMR spectroscopy, are commonly used to monitor epoxy cure. [Pg.2735]

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

Distributed multipole models for Nj and HF. (Figure adapted from Stone A j and M Alderton 19S5. ibuted Multipole Analysis Methods and Applications. Molecular Physics 56 3 047-1064.)... [Pg.214]

The deterrnination of impurities in the hehum-group gases is also accompHshed by physical analytical methods and by conventional techniques for measuring the impurity in question (93), eg, galvanic sensors for oxygen, nondispersive infrared analysis for carbon dioxide, and electrolytic hygrometers for water. [Pg.14]

Acetylene Derived from Hydrocarbons The analysis of purified hydrocarbon-derived acetylene is primarily concerned with the determination of other unsaturated hydrocarbons and iaert gases. Besides chemical analysis, physical analytical methods are employed such as gas chromatography, ir, uv, and mass spectroscopy. In iadustrial practice, gas chromatography is the most widely used tool for the analysis of acetylene. Satisfactory separation of acetylene from its impurities can be achieved usiag 50—80 mesh Porapak N programmed from 50—100°C at 4°C per minute. [Pg.378]

PHYSICAL-CHEMICAL METHODS OF INVESTIGATION IN ANALYSIS OF POLYMER-SILICA NANOSORBENTS... [Pg.203]

Whilst solving some ecological problems of metals micro quantity determination in food products and water physicochemical and physical methods of analysis are employed. Standard mixture models (CO) are necessary for their implementation. The most interesting COs are the ones suitable for graduation and accuracy control in several analysis methods. Therefore the formation of poly functional COs is one of the most contemporary problems of modern analytical chemistry. The organic metal complexes are the most prospective class of CO-based initial substances where P-diketonates are the most appealing. [Pg.405]

At the end of the 1930s, the only generally available method for determining mean MWs of polymers was by chemical analysis of the concentration of chain end-groups this was not very accurate and not applicable to all polymers. The difficulty of applying well tried physical chemical methods to this problem has been well put in a reminiscence of early days in polymer science by Stockmayer and Zimm (1984). The determination of MWs of a solute in dilute solution depends on the ideal, Raoult s Law term (which diminishes as the reciprocal of the MW), but to eliminate the non-ideal terms which can be substantial for polymers and which are independent of MW, one has to go to ever lower concentrations, and eventually one runs out of measurement accuracy . The methods which were introduced in the 1940s and 1950s are analysed in Chapter 11 of Morawetz s book. [Pg.330]

The choice of method from available resources depends largely upon the properties of the material to be analyzed, the basic significance or physical wearing of the measurement, and the purpose for which the information is required. For example, failure to disperse the particles as discrete entities is the biggest single problem in all size analysis methods that depend on individual particulate behavior. With microscopic techniques particles must be dispersed on the slide to permit observation of individual particles, and in sedimentation techniques the material must be suspended in the fluid so that the particles behave as individuals and not as floes. [Pg.498]

In the preceding section, we presented principles of spectroscopy over the entire electromagnetic spectrum. The most important spectroscopic methods are those in the visible spectral region where food colorants can be perceived by the human eye. Human perception and the physical analysis of food colorants operate differently. The human perception with which we shall deal in Section 1.5 is difficult to normalize. However, the intention to standardize human color perception based on the abilities of most individuals led to a variety of protocols that regulate in detail how, with physical methods, human color perception can be simulated. In any case, a sophisticated instrumental set up is required. We present certain details related to optical spectroscopy here. For practical purposes, one must discriminate between measurements in the absorbance mode and those in the reflection mode. The latter mode is more important for direct measurement of colorants in food samples. To characterize pure or extracted food colorants the absorption mode should be used. [Pg.14]

Conventional bulk measurements of adsorption are performed by determining the amount of gas adsorbed at equilibrium as a function of pressure, at a constant temperature [23-25], These bulk adsorption isotherms are commonly analyzed using a kinetic theory for multilayer adsorption developed in 1938 by Brunauer, Emmett and Teller (the BET Theory) [23]. BET adsorption isotherms are a common material science technique for surface area analysis of porous solids, and also permit calculation of adsorption energy and fractional surface coverage. While more advanced analysis methods, such as Density Functional Theory, have been developed in recent years, BET remains a mainstay of material science, and is the recommended method for the experimental measurement of pore surface area. This is largely due to the clear physical meaning of its principal assumptions, and its ability to handle the primary effects of adsorbate-adsorbate and adsorbate-substrate interactions. [Pg.305]

Spectrophotometry Chromatographic methods Thermal analysis techniques Gas transmission analysis Physical test methods Miscellaneous techniques... [Pg.598]

Order and polydispersity are key parameters that characterize many self-assembled systems. However, accurate measurement of particle sizes in concentrated solution-phase systems, and determination of crystallinity for thin-film systems, remain problematic. While inverse methods such as scattering and diffraction provide measures of these properties, often the physical information derived from such data is ambiguous and model dependent. Hence development of improved theory and data analysis methods for extracting real-space information from inverse methods is a priority. [Pg.146]

Integrating chemical analysis methods and physical sensors with microreactors enables monitoring of reaction conditions and composition. This ability renders instrumented microreactors powerful tools for determining chemical kinetics and identifying optimal conditions for chemical reactions. The latter can be achieved by automated feedback-controlled optimization of reaction conditions, which greatly reduces time and materials costs associated with the development of chemical synthesis procedures. [Pg.68]

Hazard and Operability Analysis (Hazop) (Kletz, 1992) is one of the most used safety analysis methods in the process industry. It is one of the simplest approaches to hazard identification. Hazop involves a vessel to vessel and a pipe to pipe review of a plant. For each vessel and pipe the possible disturbances and their potential consequences are identified. Hazop is based on guide words such as no, more, less, reverse, other than, which should be asked for every pipe and vessel (Table 1). The intention of the quide words is to stimulate the imagination, and the method relies very much on the expertise of the persons performing the analysis. The idea behind the questions is that any disturbance in a chemical plant can be described in terms of physical state variables. Hazop can be used in different stages of process design but in restricted mode. A complete Hazop study requires final process plannings with flow sheets and PID s. [Pg.24]

The Endgroup analysis method can be carried out by using the following chemical and Physical Methods ... [Pg.90]

Instrumental analysis can also involve chemical reactions, but it always involves modern sophisticated electronic instrumentation. Instrumental analysis techniques are high-tech techniques, often utilizing the ultimate in complex hardware and software. While sometimes not as precise as a carefully executed wet chemical method, instrumental analysis methods are fast and can offer a much greater scope and practicality to the analysis. In addition, instrumental methods are generally used to determine the minor constituents or constituents that are present in low levels, rather than the major constituents of a sample. We discuss wet chemical methods in Chapters 3 and 5. Chapter 15 is concerned with physical properties Chapters 7 to 14 involve specific instrumental methods. [Pg.4]

Gravimetric analysis methods proceed with the following steps 1) the weight or volume of the prepared sample is obtained, 2) the analyte is either physically separated from the sample matrix or chemically altered and its derivative separated from the sample matrix, and 3) the weight of the separated analyte or its derivative is obtained. The data thus obtained are then used to calculate the desired results. [Pg.40]

Experiment 4 Practice of Gravimetric Analysis Using Physical Separation Methods... [Pg.54]

Wet methods are those that involve physical separation and classical chemical reaction stoichiometry, but no instrumentation beyond an analytical balance. Instrumental methods are those that involve additional high-tech electronic instrumentation, often complex hardware and software. Common analytical strategy operations include sampling, sampling preparation, data analysis, and calculations. Also, weight or volume data are required for almost all methods as part of the analysis method itself. [Pg.515]

Very rarely are measurements themselves of much use or of great interest. The statement "the absorption of the solution increased from 0.6 to 0.9 in ten minutes", is of much less use than the statement, "the reaction has a half-life of 900 sec". The goal of model-based analysis methods presented in this chapter is to facilitate the above translation from original data to useful chemical information. The result of a model-based analysis is a set of values for the parameters that quantitatively describe the measurement, ideally within the limits of experimental noise. The most important prerequisite is the model, the physical-chemical, or other, description of the process under investigation. An example helps clarify the statement. The measurement is a series of absorption spectra of a reaction solution the spectra are recorded as a function of time. The model is a second order reaction A+B->C. The parameter of interest is the rate constant of the reaction. [Pg.101]

More commonly, we are faced with the need for mathematical resolution of components, using their different patterns (or spectra) in the various dimensions. That is, literally, mathematical analysis must supplement the chemical or physical analysis. In this case, we very often initially lack sufficient model information for a rigorous analysis, and a number of methods have evolved to "explore the data", such as principal components and "self-modeling analysis (21), cross correlation (22). Fourier and discrete (Hadamard,. . . ) transforms (23) digital filtering (24), rank annihilation (25), factor analysis (26), and data matrix ratioing (27). [Pg.68]

In addition to the physical data analysis methods, traditional engineering analysis tools and methods are also useful during incident investigations. Traditional analysis tools can he used to determine the following. [Pg.174]


See other pages where Physical analysis methods is mentioned: [Pg.265]    [Pg.265]    [Pg.1824]    [Pg.543]    [Pg.148]    [Pg.148]    [Pg.94]    [Pg.120]    [Pg.304]    [Pg.267]    [Pg.214]    [Pg.759]    [Pg.282]    [Pg.46]    [Pg.780]    [Pg.354]    [Pg.417]    [Pg.149]    [Pg.419]    [Pg.89]    [Pg.1189]    [Pg.54]   
See also in sourсe #XX -- [ Pg.33 , Pg.34 , Pg.35 , Pg.36 ]

See also in sourсe #XX -- [ Pg.33 , Pg.34 , Pg.35 , Pg.36 ]




SEARCH



Physical methods

© 2024 chempedia.info