Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphors, recycling

Phosphors recycling Continued) alkaline fusion, 192 direct leaching, 188-191 mechanochemical treatment, 191-192 solvent extractirai, 192-194 physical separatirai... [Pg.598]

Israel Mining Industries developed a process in which hydrochloric acid, instead of sulfuric acid, was used as the acidulant (37). The acidulate contained dissolved calcium chloride which then was separated from the phosphoric acid by use of solvent extraction using a recyclable organic solvent. The process was operated commercially for a limited time, but the generation of HCl fumes was destmctive to production equipment. [Pg.225]

Inorganic Methods. Before the development of electrolytic processes, hydrogen peroxide was manufactured solely from metal peroxides. Eady methods based on barium peroxide, obtained by air-roasting barium oxide, used dilute sulfuric or phosphoric acid to form hydrogen peroxide in 3—8% concentration and the corresponding insoluble barium salt. Mote recent patents propose acidification with carbon dioxide and calcination of the by-product barium carbonate to the oxide for recycle. [Pg.478]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Suitable catalysts include the hydroxides of sodium (119), potassium (76,120), calcium (121—125), and barium (126—130). Many of these catalysts are susceptible to alkali dissolution by both acetone and DAA and yield a cmde product that contains acetone, DAA, and traces of catalyst. To stabilize DAA the solution is first neutralized with phosphoric acid (131) or dibasic acid (132). Recycled acetone can then be stripped overhead under vacuum conditions, and DAA further purified by vacuum topping and tailing. Commercial catalysts generally have a life of about one year and can be reactivated by washing with hot water and acetone (133). It is reported (134) that the addition of 0.2—2 wt % methanol, ethanol, or 2-propanol to a calcium hydroxide catalyst helps prevent catalyst aging. Research has reported the use of more mechanically stable anion-exchange resins as catalysts (135—137). The addition of trace methanol to the acetone feed is beneficial for the reaction over anion-exchange resins (138). [Pg.493]

Isopropylnaphthalenes can be prepared readily by the catalytic alkylation of naphthalene with propjiene. 2-lsopropylnaphthalene [2027-17-0] is an important intermediate used in the manufacture of 2-naphthol (see Naphthalenederivatives). The alkylation of naphthalene with propjiene, preferably in an inert solvent at 40—100°C with an aluminum chloride, hydrogen fluoride, or boron trifluoride—phosphoric acid catalyst, gives 90—95% wt % 2-isopropylnaphthalene however, a considerable amount of polyalkylate also is produced. Preferably, the propylation of naphthalene is carried out in the vapor phase in a continuous manner, over a phosphoric acid on kieselguhr catalyst under pressure at ca 220—250°C. The alkylate, which is low in di- and polyisopropylnaphthalenes, then is isomerized by recycling over the same catalyst at 240°C or by using aluminum chloride catalyst at 80°C. After distillation, a product containing >90 wt % 2-isopropylnaphthalene is obtained (47). [Pg.487]

The reaction is acid cataly2ed by the by-product phosphoric acid. Only red phosphoms reacts. Unreacted yellow phosphoms is separated and recycled. [Pg.317]

Wet-process acid is manufactured by the digestion of phosphate rock (calcium phosphate) with sulfuric acid. Depending on availabiHty, other acids such as hydrochloric may be used, but the sulfuric-based processes are by far the most prevalent. Phosphoric acid is separated from the resultant calcium sulfate slurry by filtration. To generate a filterable slurry and to enhance the P2O5 content of the acid, much of the acid filtrate is recycled to the reactor. [Pg.327]

Mineral acids are used as catalysts, usually in a concentration of 20— 40 wt % and temperatures of 30—60°C. An efficient surfactant, preferably one that is soluble in the acid-phase upon completion of the reaction, is needed to emulsify the a-pinene and acid. The surfactant can then be recycled with the acid. Phosphoric acid is the acid commonly used in the pine oil process. Its mild corrosion characteristics and its moderate strength make it more manageable, especially because the acid concentration is constandy changing in the process by the consumption of water. Phosphoric acid is also mild enough to prevent any significant dehydration of the alcohols formed in the process. Optimization of a process usually involves considerations of acid type and concentration, temperature, surfactant type and amount, and reaction time. The optimum process usually gives a maximum of alcohols with the minimum amount of hydrocarbons and cineoles. [Pg.420]

Citral reacts in an aldol condensation using excess acetone and a basic catalyst, usually sodium hydroxide. The excess acetone can be recovered for recycle. The resulting intermediate pseudoionone [141-10-6] (83) after cyclization with phosphoric acid gives predominantly a-ionone [127-41 -3] (84), which is the isomer commercially important in flavors and fragrances. A hydrocarbon solvent is generally necessary in order to get high yields. P-Ionone [14901-07-6] (85) is the predominant isomer if sulfuric acid is used as the catalyst but lower temperature than that for cyclization to a-ionone is required. y-Ionone [79-6-5] (86) is also produced. [Pg.424]

Hibemia-Chemie has described a vapor-phase process that passes fresh and recycled 85 wt % phosphoric acid over a catalyst of hydrochloric acid-leached bentonite impregnated with phosphoric acid. Catalyst activity was claimed to remain constant over a period of one year at the following conditions (126) ... [Pg.406]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

In chemical activation processes, the precursor is first treated with a chemical activation agent, often phosphoric acid, and then heated to a temperature of 450 -700 °C in an activation kiln. The char is then washed with water to remove the acid from the carbon. The filtrate is passed to a chemical recovery unit for recycling. The carbon is dried, and the product is often screened to obtain a specific particle size range. A diagram of a process for the chemical activation of a wood precursor is shown in Fig. 3. [Pg.240]

The hydration reaction is carried out in a reactor at approximately 300°C and 70 atmospheres. The reaction is favored at relatively lower temperatures and higher pressures. Phosphoric acid on diatomaceous earth is the catalyst. To avoid catalyst losses, a water/ethylene mole ratio less than one is used. Conversion of ethylene is limited to 4-5% under these conditions, and unreacted ethylene is recycled. A high selectivity to ethanol is obtained (95-97%). [Pg.205]

Catalytic polymerization, which is implemented in presence of a catalyst such as phosphoric acid in this case, lower temperatures are used and the products are gasoline and unpolymerized gases. The unpolymerized portion is separated and recycled for polymerization. [Pg.102]

In the early 1980s, the world witnessed the sale of the first personal computers. Its transition from the relatively bulky and slow first units to the sleek, speed demons has made the computer truly revolutionary. With each improvement in computers, however, comes the increasing problem of what to do with the ever increasing number of computer e-wastes. The U.S. EPA estimates that nearly 250 million computers will become obsolete in the next five years in the United States alone. Unfortunately, only approximately 10% of these old computers that are retired each year are being recycled. This presents a substantial concern because toxic elements such as lead, cadmium, mercury, barium, chromium, beryllium as well as flame retardant, and phosphor are contained in a typical computer and there would be potential harm if there was a release of these elements into the environment.1... [Pg.1230]

In a recycling plant, the recyclable materials (glass, metal, plastic, phosphor powder, mercury) can be separated and safely recovered. Recycling plants compatible with the DTC are available in the market for 0.6 million, with a capacity to process 5 drum loads (1,500 + kg) of crushed lamps per hour (in excess of ten million lamps per annum). Indicative operational costs, excluding... [Pg.430]

A light diesel fuel was produced by distillate hydrotreating of the straight-run Fe-HTFT material, while the heavier fraction was hydrocracked over a dewaxing catalyst, which produced a heavy diesel (Table 18.10). Some diesel fuel was also produced by C3-C4 olefin oligomerization over solid phosphoric acid by recycling the naphtha thus produced. It has previously been pointed out that solid phosphoric acid is not well suited for distillate production,42 and the hydrogenated... [Pg.347]

PPh2 Phosphorous- Pd, Pt Stille Coupling 0.41 mol% 79-95 Recycling possible Positive dendritic 73, 74... [Pg.337]

After extraction, the organic solvent, loaded with phosphoric acid, is scrubbed with a phosphoric acid solution in equilibrium with the organic solvent. In this way, coextracted contamination is removed. The scrub liquor is recycled to extraction. [Pg.631]

The phosphate fertilizer industry is defined as eight separate processes phosphate rock grinding, wet process phosphoric acid, phosphoric acid concentration, phosphoric acid clarification, normal superphosphate, triple superphosphate, ammonium phosphate, and sulfuric acid. Practically all phosphate manufacturers combine the various effluents into a large recycle water system. It is only when the quantity of recycle water increases beyond the capacity to contain it that effluent treatment is necessary. [Pg.411]

In a recent document [25] presenting techniques adopted by the French for pollution prevention, a new process modification for steam segregation and recycle in phosphoric acid production is described. As shown in Figure 9, raw water from the sludge/fluorine separation system is recycled to the heat-exchange system of the sulfuric acid dilution unit and the wastewater used in plaster manufacture. Furthermore, decanted supernatant from the phosphogypsum deposit pond is recycled for treatment in the water filtration unit. The claim was that this process modification permits an important reduction in pollution by... [Pg.427]


See other pages where Phosphors, recycling is mentioned: [Pg.593]    [Pg.597]    [Pg.593]    [Pg.597]    [Pg.241]    [Pg.96]    [Pg.153]    [Pg.16]    [Pg.531]    [Pg.62]    [Pg.63]    [Pg.68]    [Pg.225]    [Pg.106]    [Pg.546]    [Pg.1192]    [Pg.433]    [Pg.438]    [Pg.198]    [Pg.61]    [Pg.79]    [Pg.428]    [Pg.434]    [Pg.436]    [Pg.437]    [Pg.140]    [Pg.31]   
See also in sourсe #XX -- [ Pg.43 , Pg.159 , Pg.255 ]

See also in sourсe #XX -- [ Pg.43 , Pg.159 , Pg.255 ]




SEARCH



© 2024 chempedia.info