Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorine separation

In a recent document [25] presenting techniques adopted by the French for pollution prevention, a new process modification for steam segregation and recycle in phosphoric acid production is described. As shown in Figure 9, raw water from the sludge/fluorine separation system is recycled to the heat-exchange system of the sulfuric acid dilution unit and the wastewater used in plaster manufacture. Furthermore, decanted supernatant from the phosphogypsum deposit pond is recycled for treatment in the water filtration unit. The claim was that this process modification permits an important reduction in pollution by... [Pg.427]

Rube K., Kipphardt H. and Broekaert J. A. C. (2000) Determination of main and minor components of silicon-based materials by a combustion with elemental fluorine, separation of gaseous fluorination products by a carrier gas distillation, and gas mass spectrometry, Anal. Chem. 72 3875-3880. [Pg.401]

The end of the molecule. Two atoms not part of the same connected molecule must be in separate molecules. Coming to the end of the molecule means reaching a terminal atom of the molecule such as a mono-coordinated hydrogen or fluorine, a carbonyl oxygen, etc. [Pg.247]

Production Technology. Processes for extraction of P2O3 from phosphate rock by sulfuric acid vary widely, but all produce a phosphoric acid—calcium sulfate slurry that requires soHds-Hquid separation (usually by filtration (qv)), countercurrent washing of the soHds to improve P2O3 recovery, and concentration of the acid. Volatilized fluorine compounds are scmbbed and calcium sulfate is disposed of in a variety of ways. [Pg.225]

The cell head is fabricated from a 2.54-cm steel plate and has separate compartments for fluorine and hydrogen. The oudet-gas manifolds, hydrogen fluoride feed and purge lines, and electrical connections are on top of the head. The gas separation skirt is made of Monel. An insulating gasket maintains the seal between the tank and the head. The anode assembly consists of 32 carbon blades bolted onto a copper bar, each of which contains three copper conductor posts. The cathode assembly consists of three vertical, 0.6-cm parallel steep plates. The plates surround the anode assembly and are supported by three steel posts which also serve as conductors. [Pg.126]

The common structural element in the crystal lattice of fluoroaluminates is the hexafluoroaluminate octahedron, AIF. The differing stmctural features of the fluoroaluminates confer distinct physical properties to the species as compared to aluminum trifluoride. For example, in A1F. all corners are shared and the crystal becomes a giant molecule of very high melting point (13). In KAIF, all four equatorial atoms of each octahedron are shared and a layer lattice results. When the ratio of fluorine to aluminum is 6, as in cryoHte, Na AlF, the AIFp ions are separate and bound in position by the balancing metal ions. Fluorine atoms may be shared between octahedrons. When opposite corners of each octahedron are shared with a corner of each neighboring octahedron, an infinite chain is formed as, for example, in TI AIF [33897-68-6]. More complex relations exist in chioUte, wherein one-third of the hexafluoroaluminate octahedra share four corners each and two-thirds share only two corners (14). [Pg.142]

In addition, there are other methods of manufacture of cryoHte from low fluorine value sources, eg, the effluent gases from phosphate plants or from low grade fluorspar. In the former case, making use of the fluorosiHcic acid, the siHca is separated by precipitation with ammonia, and the ammonium fluoride solution is added to a solution of sodium sulfate and aluminum sulfate at 60—90°C to precipitate cryoHte (26,27) ... [Pg.144]

Another impetus to expansion of this field was the advent of World War 11 and the development of the atomic bomb. The desired isotope of uranium, in the form of UF was prepared by a gaseous diffusion separation process of the mixed isotopes (see Fluorine). UF is extremely reactive and required contact with inert organic materials as process seals and greases. The wartime Manhattan Project successfully developed a family of stable materials for UF service. These early materials later evolved into the current fluorochemical and fluoropolymer materials industry. A detailed description of the fluorine research performed on the Manhattan Project has been pubUshed (2). [Pg.266]

Certain CFCs are used as raw materials to manufacture key fluorinated olefins to support polymer apphcations. Thermolysis of HCFC-22 affords tetrafluoroethylene and hexafluoropropylene [116-15 ] under separate processing conditions. Dechlorination of CFC-113 forms chlorotrifluoroethylene [79-38-9]. Vinyhdene fluoride [75-38-7] is produced by the thermal cracking of HCFC-142b. [Pg.269]

Electrochemical Fluorination. In the Simons electrochemical fluorination (ECF) process the organic reactant is dissolved in anhydrous hydrogen fluoride and fluorinated at the anode, usually nickel, of an electrochemical ceU. This process has been reviewed (6). Essentially all hydrogen atoms are substituted by fluorine atoms carbon—carbon multiple bonds are saturated. The product phase is heavier than the HF phase and insoluble in it and is recovered by phase separation. [Pg.298]

Properties have been determined for a series of block copolymers based on poly[3,3-bis(ethoxymethyl)oxetane] and poly [3,3-bis(methoxymethyl)oxetane]- (9-tetrahydrofuran. The block copolymers had properties suggestive of a thermoplastic elastomer (308). POX was a good main chain for a weU-developed smectic Hquid crystalline state when cyano- or fluorine-substituted biphenyls were used as mesogenic groups attached through a four-methylene spacer (309,310). Other side-chain Hquid crystalline polyoxetanes were observed with a spacer-separated azo moiety (311) and with laterally attached mesogenic groups (312). [Pg.368]

Fluorine. Fluorine is the most reactive product of all electrochemical processes (63). It was first prepared in 1886, but important quantities of fluorine were not produced until the early 1940s. Fluorine was required for the production of uranium hexafluoride [7783-81 -5] UF, necessary for the enrichment of U (see DIFFUSION SEPARATION METHODS). The Manhattan Project in the United States and the Tube Alloy project in England contained parallel developments of electrolytic cells for fluorine production (63). The principal use of fluorine continues to be the production of UF from UF. ... [Pg.78]

Organic fluorine as a separate industry that began in the late 1920s with the discovery by Midgle of fluorocarbons for use as refrigerants. Ammonia was unsuitable because of the hazard and unpleasant smell from minute leaks. Sulfur dioxide had similar problems. The best refrigerant was... [Pg.267]

A special issue (Volume 6) of the Bulletin de la Societd Chimique de France published in 1986 contained papers contributed to the Moissan symposium Abstracts of the papers presented at this symposium were published as a special volume (Volume 35) of the Journal of Fluorine Chemistry m 1987 A separate volume (Volume 54) of the Journal of Fluorine Chemistry was also issued m 1991 and contained abstracts of papers presented at the Thirteenth International Fluorine Symposium in Bochum, Germany... [Pg.3]


See other pages where Fluorine separation is mentioned: [Pg.209]    [Pg.291]    [Pg.103]    [Pg.209]    [Pg.151]    [Pg.256]    [Pg.35]    [Pg.574]    [Pg.209]    [Pg.291]    [Pg.103]    [Pg.209]    [Pg.151]    [Pg.256]    [Pg.35]    [Pg.574]    [Pg.178]    [Pg.247]    [Pg.127]    [Pg.128]    [Pg.128]    [Pg.128]    [Pg.130]    [Pg.138]    [Pg.268]    [Pg.319]    [Pg.321]    [Pg.322]    [Pg.290]    [Pg.11]    [Pg.150]    [Pg.85]    [Pg.206]    [Pg.69]    [Pg.224]    [Pg.129]    [Pg.73]    [Pg.161]    [Pg.364]    [Pg.111]    [Pg.97]    [Pg.195]    [Pg.453]    [Pg.97]   
See also in sourсe #XX -- [ Pg.290 ]




SEARCH



Fluorine: chemical bonding separation

© 2024 chempedia.info