Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoric acid solid

The reachon of benzene with ethylene or propylene to form ethylbenzene or isopropylbenzene (cumene) is an industrially important transformahon, with ethylbenzene as the key building block for polystyrene and cumene as the feedstock for phenol produchon [55]. Fthylbenzene was originally produced with a Lewis acid catalyst consishng of AlCfi or a Bronsted acidic solid phosphoric acid (SPA) catalyst [56]. Both catalyst systems suffered from equipment corrosion so, in the 1980s the Mobil-Badger vapor phase alkylation process was introduced, which... [Pg.364]

His first major discovery in the U.S. was the development of silicophosphoric acid (solid phosphoric acid) as a catalyst for hydrocarbon conversion. [Pg.29]

The hydration of oleflns is important for the direct synthesis of alcohols from olefins in the pietroleum industry and has been extensively studied over various solid acid catalysts. In the case of ethanol synthesis from ethylene and water, silicotungstic acids, silicophosphoric acids, solid phosphoric acids, metal sulfates, " and metal oxides have been studied as solid acid catalysts. In its industrial process, a solid phosphoric acid catalyst (Shell patent) is widely used throughout the world. The nature of the active (acidic) sites which exhibit high catalytic activity and selectivity is discussed below together with the hydration mechanism involving the catalytic behavior. [Pg.247]

The weakly basic 2-aminothiazoles are most readily diazotized in concentrated solutions of oxygen containing acids such as sulfuric acid, 40 to 50% (322-326) fiuoroboric phosphoric acids (589) phosphoric acid (327, 328) and mixtures of phosphoric and nitric acid (74. 322, 323. 329-331). From strong acid solutions, solid diazonium salts can be isolated (34, 332. 333). [Pg.66]

A percarbonate possesses, according to Daniel (Ref 1), some expl properties because it can be detonated if a sufficiently powerful detonator is used. According to Mellor (Ref 2, p 86), a violent reaction took place when a soln of 0.5g of solid phosphoric acid, some ether, and a few drops of w were added to 2g of K percarbonate. It was used by Turpin in Fr in expl mixts, ie, Pyrodialytes (qv) (Ref 1)... [Pg.616]

After bauxite treatment the product was fractionated to produce C3-C4 and naphtha (C5-204°C) fractions. The C3-C4 olefin-rich gas was oligomerized over a solid phosphoric acid (SPA) catalyst to produce an unhydrogenated polymer gasoline with a research octane number (RON) of 95 and MON of 82.21 The bauxite-treated FT motor gasoline (RON of 87, MON of 76) was mixed with the polymer gasoline and some natural gas condensates (and crude-oil-derived naphtha) to produce the final motor gasoline product. In this respect it is noteworthy that the Fe-HTFT-derived material was the high-octane-blend stock. [Pg.339]

The transportation fuels produced and marketed (Table 18.9)40 met the South African fuel specifications of that time and included some coal-derived liquids (not shown in Figure 18.5). Although the refinery originally produced no jet fuel, it was demonstrated that the hydrogenated kerosene range oligomers from olefin oligomerization over a solid phosphoric acid catalyst met the requirements for jet fuel.38 (Semisynthetic jet fuel was approved in 1999 and fully synthetic jet fuel was approved in 2008 DEFSTAN 91-91/Issue 6). [Pg.346]

A light diesel fuel was produced by distillate hydrotreating of the straight-run Fe-HTFT material, while the heavier fraction was hydrocracked over a dewaxing catalyst, which produced a heavy diesel (Table 18.10). Some diesel fuel was also produced by C3-C4 olefin oligomerization over solid phosphoric acid by recycling the naphtha thus produced. It has previously been pointed out that solid phosphoric acid is not well suited for distillate production,42 and the hydrogenated... [Pg.347]

Olefin oligomerization over solid phosphoric acid was a key technology in the refinery, and most of the C3-C4 gaseous olefins were converted to liquid products. [Pg.349]

Mashapa, T. N., and De Klerk, A. 2007. Solid phosphoric acid catalysed conversion of oxygenate containing Fischer-Tropsch naphtha. Appl. Catal. A 332 200-8. [Pg.361]

De Klerk, A. 2006. Distillate production by oligomerization of Fischer-Tropsch olefins over solid phosphoric acid. Energy Fuels 20 439 -5. [Pg.362]

Much ethanol is manufactured by the hydration of ethene. The reaction is an addition reaction between steam and ethene at 300 °C, in the presence of a solid phosphoric acid catalyst, at a pressure of about 70 atmospheres. [Pg.102]

Alkymax A process for removing benzene from petroleum fractions. They are mixed with light olefin fractions (containing mainly propylene) and passed over a fixed-bed catalyst, which promotes benzene alkylation. The catalyst is solid phosphoric acid (SPA), made by mixing a phosphoric acid with a siliceous solid carrier, and calcining. Invented in 1980 by UOP... [Pg.18]

Solid phosphoric fertilizers are available as mono-ammonium phosphate, di-ammonium phosphate, triple superphosphate and single superphosphate additionally, high-grade liquid phosphoric acid is available. [Pg.56]

Cumene is an important intermediate in the manufacture of phenol and acetone. The feed materials are benzene and propylene. This is a Friedel-Crafts alkylation reaction catalyzed by solid phosphoric acid at 175-225 °C and 400-600 psi. The yield is 97% based on benzene and 92% on propylene. Excess benzene stops the reaction at the monoalkylated stage and prevents the polymerization of propylene. The benzene propylene ratio is 8-10 1. [Pg.171]

Orthophosphoric acid and pyrophosphoric acid are preferred catalysts. Phosphorus pentoxide is catalytically active but no conclusive evidence has been described to show whether or not its activity depends on the presence of traces of water as promoter. Copper pyrophosphate and acid phosphates of cadmium are also good catalysts that the former probably owes its activity to partial conversion to acid or acidic salt under the polymerization conditions seems to be shown by the fact that there is an induction period. A composite prepared by calcining kiesel-guhr impregnated with orthophosphoric acid (the so-called solid phosphoric acid ) has found wide commercial use. [Pg.23]

Lewis and protic acids, usually AICI3 and H2SO4, are used in the liquid phase at temperatures of 40-70°C and at pressures of 5-15 atm. Phosphoric acid on kieselguhr promoted with BF3 (UOP process)309 319 is used in gas-phase alkylation (175-225°C, 30-40 atm). In addition to the large excess of benzene, propane as diluent is also used to ensure high (better than 94%) propylene conversion. This solid phosphoric acid technology accounts for 80-90% of the world s cumene production. [Pg.258]

Boron phosphate, BP04, is a white, infusible solid that vaporizes slowly above 1450°C, without apparent decomposition. It is normally prepared by dehydrating mixtures of boric acid and phosphoric acid at temperatures up to 1200°C. [Pg.209]

During the oxidation of greatly hindered alcohols, it can be advisable to use 0.5 equivalents of ortophosphoric acid (MW = 98.0) (solid phosphoric acid) instead of pyridinium trifluoroacetate. This causes an acceleration of the oxidation, although it normally leads to greater amounts of side compounds. On some highly polar compounds, the use of 0.5 equivalents of dichloroacetic acid (DCAA) (MW = 128.9, d = 1.47) can provide best results. [Pg.104]

Important aviation and motor alkylate gasoline processes are the jet-type sulfuric acid process, the Kellogg sulfuric acid autoref rigeration process, the UOP hydrofluoric acid process, and the Stratford effluent refrigeration process. Petrochemical alkylation includes various processes using as catalysts solid phosphoric acid, aluminum chloride, hydrofluoric acid, boron trifluoride, and phenol and ether complexes of boron trifluoride (1). [Pg.166]

Cumene is produced by an alkylation reaction, and most cumene has been produced over solid phosphoric acid catalyst, although some quantities have been produced by liquid phosphoric acid and aluminum chloride. Cumene is used as a raw material for the production of phenol and acetone by oxidation. [Pg.171]

Ethylbenzene was the first petrochemical to be produced by petroleum refiners in large quantities. It is made by the alkylation of benzene by ethylene. Aluminum chloride promoted with ethyl chloride was originally the predominant catalyst used for the reaction, but solid phosphoric acid has been used more recently and is becoming more popular. Some of the newer fluoride-type catalysts are expected to become quite popular. [Pg.175]

Cumene or isopropylbenzene, diisopropylbenzene, and secondary butyl-benzene, although produced in smaller quantities than some of the other petrochemical alkylates, are very important petroleum refining products. Cumene is further reacted by oxidation to form cumene hydroperoxide, which is converted to phenol and acetone it is produced by alkylating benzene with propylene catalyzed by either solid or liquid phosphoric acid. Secondary butylbenzene is made by alkylating benzene with normal butylene using the same catalysts. Diisopropylbenzene is made by reacting cumene with propylene over solid phosphoric acid or aluminum chloride catalyst. [Pg.175]


See other pages where Phosphoric acid solid is mentioned: [Pg.913]    [Pg.106]    [Pg.750]    [Pg.344]    [Pg.346]    [Pg.347]    [Pg.241]    [Pg.24]    [Pg.290]    [Pg.397]    [Pg.506]    [Pg.36]    [Pg.44]    [Pg.49]    [Pg.697]    [Pg.724]    [Pg.726]    [Pg.325]    [Pg.335]    [Pg.913]    [Pg.816]    [Pg.1279]    [Pg.859]    [Pg.831]    [Pg.102]   
See also in sourсe #XX -- [ Pg.506 ]




SEARCH



Acidic solids

Phosphoric solid

Solid acid

Solid phosphoric acid catalyst

© 2024 chempedia.info