Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenothiazines Alcohol

Aromatic denitrocyclizations have been used for many years in some well-known synthetic reactions. Probably the best known example is the Turpin synthesis of phenoxazines and similar synthesis of phenothiazines. The classical setup used usually base-catalyzed reactions in polar protic solvents, very often alcohols. In many cases using polar aprotic solvents was found advantageous. Besides the mentioned influence of the H-bonding, better ionization and lower solvation of the nucleophile are also important. Sf Ar reactions proceed through strongly polarized complexes, which are well soluble and highly polarized in polar aprotic solvents. [Pg.190]

A solution of 1.0 gram of 10-[3 -(N-acetoxyethylpiperazinyl)-propyl]-2-trifluoromethyl-phenothiazine in 25 ml of 1 N hydrochloric acid is heated at reflux briefly. Neutralization with dilute sodium carbonate solution and extraction with benzene gives the oily base, 10-[3 -(N-(3-hydroxyethylpiperazinyl)-propyl]-2-trifluoromethylphenothiazine. The base is reacted with an excess of an alcoholic hydrogen chloride solution. Trituration with ether separates crystals of the dihydrochloride salt, MP 224° to 226°C, (from U.S. Patent 3,058,979). [Pg.683]

The sedatives and hypnotics have an additive effect when administered with alcohol, antidepressants, narcotic analgesics, antihistamines, or phenothiazines. [Pg.241]

NADH. Immobilized redox mediators, such as the phenoxazine Meldola Blue or phenothiazine compoimds, have been particularly useful for this purpose (20) (see also Figure 4-12). Such mediation should be useful for many other dehydrogenase-based biosensors. High sensitivity and speed are indicated from the flow-injection response of Figure 3-21. The challenges of NADH detection and the development of dehydrogenase biosensors have been reviewed (21). Alcohol biosensing can also be accomplished in the presence of alcohol oxidase, based on measurements of the liberated peroxide product. [Pg.181]

Photolysis reactions often are associated with oxidation because the latter category of reactions frequently can be initiated by light. The photooxidation of phenothiazines with the formation of N- and S-oxides is typical. But photolysis reactions are not restricted to oxidation. In the case of sodium nitroprusside, it is believed that degradation results from loss of the nitro-ligand from the molecule, followed by electronic rearrangement and hydration. Photo-induced reactions are common in steroids [36] an example is the formation of 2-benzoylcholestan-3-one following irradiation of cholest-2-en-3-ol benzoate. Photoadditions of water and of alcohols to the electronically excited state of steroids have also been observed [37],... [Pg.150]

Nowhere, perhaps, is this phenomenon better illustrated than in the phenothiazine class. The earlier volume devoted a full chapter to the discussion of this important structural class, which was represented by both major tranquilizers and antihistamines. The lone phenothiazine below, flutiazin (130), in fact fails to show the activities characteristic of its class. Instead, the ring system is used as the aromatic nucleus for a nonsteroidal antiinflammatory agent. Preparation of 130 starts with formylation of the rather complex aniline 123. Reaction with alcoholic sodium hydroxide results in net overall transformation to the phenothiazine by the Smiles rearrangement. The sequence begins with formation of the anion on the amide nitrogen addition to the carbon bearing sulfur affords the corresponding transient spiro intermediate 126. Rearomatization... [Pg.430]

The following factors have been suggested as alternatives to consider when presented with a potential case of exposure to bicyclophosphates history of epilepsy exposure to alcohol, cocaine, lead, camphor, strychnine, and/or carbon monoxide medicinals such as phenothiazines head trauma, heatstroke encephalitis, meningitis, and tetanus. [Pg.226]

Substitution of an additional nitrogen atom onto the three-carbon side chain also serves to suppress tranquilizing activity at the expense of antispasmodic activity. Reaction of phenothiazine with epichlorohydrin by means of sodium hydride gives the epoxide 121. It should be noted that, even if initial attack in this reaction is on the epoxide, the alkoxide ion that would result from this nucleophilic addition can readily displace the adjacent chlorine to give the observed product. Opening of the oxirane with dimethylamine proceeds at the terminal position to afford the amino alcohol, 122. The amino alcohol is then converted to the halide (123). A displacement reaction with dimethylamine gives aminopromazine (124). ... [Pg.409]

Mesoridazine acts analogous to other phenothiazine neuroleptics and is used for schizophrenia, behavioral problems, psychoneurotic displays, and in severe and chronic alcoholism. Synonyms of this drug are lidanil, serentil, and others. [Pg.88]

Drugs that may interact with nitrates include alcohol, alteplase, aspirin, beta-blockers, calcium channel blockers, dihydroergotamine, heparin, nondepolarizing muscle relaxants, phenothiazines, phosphodiesterase inhibitors (eg, sildenafil, tadalafil, vardenafil), and vasodilators. [Pg.417]

Exercise caution when giving the drug with alcohol and other CNS-acting agents such as phenothiazines, barbiturates, and belladonna derivatives. [Pg.992]

Drugs that may affect trazodone include carbamazepine, phenothiazines, and venlafaxine. Drugs that may be affected by trazodone include alcohol, barbiturates, CNS depressants, digoxin, MAOIs, phenytoin, and warfarin. [Pg.1050]

Drugs that may be affected by duloxetine include drugs extensively metabolized by CYP2D6 (eg, flecainide, phenothiazines, propafenone, tricyclic antidepressants, thioridazine), alcohol, CNS-acting drugs, MAOIs, and drugs highly bound to plasma proteins (eg, warfarin). [Pg.1073]

Drugs that may be affected by SSRIs Drugs that may be affected by SSRIs include alcohol, benzodiazepines, beta blockers, buspirone, carbamazepine, cisapride, clozapine, cyclosporine, diltiazem, digoxin, haloperidol, hydantoins, lithium, methadone, mexiletine, nonsedating antihistamines, NSAIDs, olanzapine, phenothiazines, phenytoin, pimozide, procyclidine, ritonavir, ropivacaine, sumatriptan, sulfonylureas, sympathomimetics, tacrine, theophylline, tolbutamide, tricyclic antidepressants, and warfarin. [Pg.1086]

Concomitant conditions Use with caution in the following patients exposed to extreme heat or phosphorus insecticides atropine or related drugs because of additive anticholinergic effects those in a state of alcohol withdrawal those with dermatoses or other allergic reactions to phenothiazine derivatives because of the possibility of cross-sensitivity those who have exhibited idiosyncrasy to other centrally acting drugs. [Pg.1105]

Beta-blockers interact with a large number of other medications. The combination of beta-blockers with calcium antagonists should be avoided, given the risk for hypotension and cardiac arrhythmias. Cimetidine, hydralazine, and alcohol all increase blood levels of beta-blockers, whereas rifampicin decreases their concentrations. Beta-blockers may increase blood levels of phenothiazines and other neuroleptics, clonidine, phen-ytoin, anesthetics, lidocaine, epinephrine, monoamine oxidase inhibitors and other antidepressants, benzodiazepines, and thyroxine. Beta-blockers decrease the effects of insulin and oral hypoglycemic agents. Smoking, oral contraceptives, carbamazepine, and nonsteroidal anti-inflammatory analgesics decrease the effects of beta-blockers (Coffey, 1990). [Pg.356]

Estazolam potentiates the CNS depressant effects of phenothiazines, narcotics, antihistamines, MAOIs, barbiturates, alcohol, general anesthetics, and TCAs. Use with cimetidine, disulfiram, oral contraceptives, and isoniazid may diminish hepatic metabolism and result in increased plasma concentrations of estazolam and increased CNS depressant effects. Fleavy smoking (more than 20 cigarettes/day) accelerates estazolam s clearance. Theophylline antagonizes estazolam s pharmacological effects. [Pg.237]

Triazolam potentiates the CNS depressant effects of phenothiazines, narcotics, antihistamines, MAOIs, barbiturates, alcohol, general anesthetics, and antidepressants. Use with cimetidine and disulfiram may increase triazolam s plasma concentration. [Pg.237]

In contrast, acute alcohol use can inhibit metabolism of other drugs because of decreased enzyme activity or decreased liver blood flow. Phenothiazines, tricyclic antidepressants, and sedative-hypnotic drugs are the most important drugs that interact with alcohol by this pharmacokinetic mechanism. [Pg.499]

Acute alcohol intake, amiodarone, chloramphenicol, chlordiazepoxide, diazepam,dicumarofdisulfiram,estrogens, H -antagonists, halothane, isoniazid, methylphenidate, phenothiazines, phenylbutazone, salicylates, succinimides, sulfonamides, tolbutamide, trazodone... [Pg.141]


See other pages where Phenothiazines Alcohol is mentioned: [Pg.378]    [Pg.387]    [Pg.389]    [Pg.390]    [Pg.401]    [Pg.972]    [Pg.221]    [Pg.286]    [Pg.187]    [Pg.397]    [Pg.406]    [Pg.408]    [Pg.409]    [Pg.420]    [Pg.2055]    [Pg.217]    [Pg.307]    [Pg.221]    [Pg.107]    [Pg.283]    [Pg.485]    [Pg.1250]    [Pg.57]    [Pg.57]    [Pg.217]    [Pg.307]    [Pg.610]    [Pg.33]    [Pg.284]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



© 2024 chempedia.info