Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol as acid

Purcell and coworkers obtained good correlations between the IR and H NMR methods by the use of 1,1,1,3,3,3-hexafluoropropanol and phenol as acids . Taddei and colleagues have reported that with CHCI3 as the donor, a free energy relationship is established between the association constants and the H NMR chemical shift values of CHCI3 in the presence of Lewis bases. However, a non-linear relationship has been observed for several other Lewis bases and CHCI3 by other authors . [Pg.552]

Salts.—As has been stated, the acid nature of the phenols is a distinctive character. This is especially true of the lower members, phenol, the simplest member, being commonly known as carbolic acid. In the case of certain substituted phenols the acid character is even more marked, e.g., picric acid, which is tri-nitro phenol. As acids the phenols readily form salts termed phepolates. [Pg.611]

REACTIONS OF PHENOLS AS ACIDS 21.5A Strength of Phenols as Acids... [Pg.949]

Typical organic acids contain the --C(0)0H group, but many other acid groupings, e.g. the sulphonic -S(0)20H give acidic properties to organic compounds. Phenols have acidic properties and are classified with enols as pseudo-acids. [Pg.12]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

Add dilute sulphuric acid, with stirring, to the cold alkahne solution until the solution is acid to htmus or Congo red paper and the acid, if a solid, commences to separate as a faint permanent precipitate. Now add dilute sodium carbonate solution until the solution is alkahne (litmus paper) and any precipitate has completely redissolved. Extract the clear solution twice with ether evaporate or distil the ether from the ethereal solution on a water bath CAUTION no flames may be near) and identify the residual phenol as under 1. Remove the dissolved ether from the aqueous solution by boiling, acidify with dilute sulphuric acid and identify the organic acid present (see Sections 111,85 and IV, 175). [Pg.786]

Phenol. The change in the orientation of substitution into phenol as a result of the superimposition of nitrosation on nitration is a well-established phenomenon. In aqueous sulphuric acid it leads to a change from the production of 73 % of o-nitrophenol under nitrating... [Pg.96]

Multiple substitution by strongly electron withdrawing groups greatly increases the acidity of phenols as the values for 2 4 dimtrophenol (4 0) and 2 4 6 trimtrophenol (0 4) m Table 24 2 attest... [Pg.999]

Section 24 10 The Kolbe-Schmitt synthesis of salicylic acid is a vital step m the preparation of aspirin Phenols as their sodium salts undergo highly regioselective ortho carboxylation on treatment with carbon dioxide at elevated temperature and pressure... [Pg.1017]

Phenol sulfonic acid (determination of nitrogen as nitrate water analysis for nitrate) dissolve 25 g pure, white phenol in 150 mL of pure concentrated H2SO4, add 75 mL of fuming H2SO4 (15% SO3), stir well and heat for two hours at 100°C. [Pg.1194]

Nucleophilic Addition. Reagents with labile hydrogen atoms, such as alcohols, thiols, phenols, carboxyHc acids and amines, add to ketenes giving the corresponding carboxyHc acid derivatives (1) as shown ia Figure 1 (38). Not many are of practical importance, as there are better ways to such... [Pg.473]

Detergents are metal salts of organic acids used primarily in crankcase lubricants. Alkylbenzenesulfonic acids, alkylphenols, sulfur- and methjiene-coupled alkyl phenols, carboxyUc acids, and alkylphosphonic acids are commonly used as their calcium, sodium, and magnesium salts. Calcium sulfonates, overbased with excess calcium hydroxide or calcium carbonate to neutralize acidic combustion and oxidation products, constitute 65% of the total detergent market. These are followed by calcium phenates at 31% (22). [Pg.242]

The Guerbet reaction can be used to obtain higher alcohols 2-propyl-1-heptanol [10042-59-8] from 1-pentanol condensation and 6-methyl-4-nonanol from 2-pentanol (80—83). Condensations with alkah phenolates as the base, instead of copper catalyst, produce lower amounts of carboxyhc acids and requke lower reaction temperatures (82,83). The crossed Guerbet reaction of 1-pentanol with methanol in the presence of sodium methoxide catalyst afforded 2-heptanol in selectivities of about 75% (84). [Pg.373]

Colorimetric Methods. Numerous colorimetric methods exist for the quantitative determination of carbohydrates as a group (8). Among the most popular of these is the phenol—sulfuric acid method of Dubois (9), which rehes on the color formed when a carbohydrate reacts with phenol in the presence of hot sulfuric acid. The test is sensitive for virtually all classes of carbohydrates. Colorimetric methods are usually employed when a very small concentration of carbohydrate is present, and are often used in clinical situations. The Somogyi method, of which there are many variations, rehes on the reduction of cupric sulfate to cuprous oxide and is appHcable to reducing sugars. [Pg.10]

Mild acid converts it to the product and ethanol. With the higher temperatures required of the cyano compound [1003-52-7] (15), the intermediate cycloadduct is converted direcdy to the product by elimination of waste hydrogen cyanide. Often the reactions are mn with neat Hquid reagents having an excess of alkene as solvent. Polar solvents such as sulfolane and /V-m ethyl -pyrrol i don e are claimed to be superior for reactions of the ethoxy compound with butenediol (53). Organic acids, phenols, maleic acid derivatives, and inorganic bases are suggested as catalysts (51,52,54,59,61,62) (Fig. 6). [Pg.70]

Some primaries have articles devoted to them and their derivatives, ie, Benzoic ACID, Phenol, Salicylic acid, and Phthalic anhydride as a derivative of phthahc acid. The primary p-naphthol is discussed in Naphthalene derivatives. [Pg.286]

Me3Si)2NH, Me3SiCl, Pyr, 20°, 5 min, 100% yield. ROH is a carbohydrate. Hexamethyldisilazane (HMDS) is one of the most common sily-lating agents and readily silylates alcohols, acids, amines, thiols, phenols, hydroxamic acids, amides, thioamides, sulfonamides, phosphoric amides, phosphites, hydrazines, and enolizable ketones. It works best in the presence of a catalyst such as X-NH-Y, where at least one of the group X or Y is electron-withdrawing. ... [Pg.69]

Et3SiCl, Pyr. Triethylsilyl chloride is by far the most common reagent for the introduction of the TES group. Silylation also occurs with imidazole and DMF arid with dimethylaminopyridine as a catalyst. Phenols, carboxylic acids, and amines have also been silylated with TESCl. [Pg.73]

Aryl perfluoroalkylsulfonaies, readily available by the reaction of the corresponding phenols and acid anhydrides or chlorides, are used as reagents in or-ganometallic coupling reactions (for a recent review, see reference 69)... [Pg.963]

Nucleophiles can also act as acids and bases, and this behavior substantially alters their nucleophilicity. At pH 5, trimethylamine exists mainly as its conjugate acid, trimethylammonium cation. First draw a Lewis structure, and then examine the electrostatic potential for trimethylammonium ion. On the basis of the map, which is the better nucleophile, the cation or the corresponding neutral amine At pH 12, phenol exists mainly as its conjugate base, phenoxide anion. First draw a Lewis structure (or series of Lewis structures), and then examine the electrostatic potential map for phenoxide anion. Which is the better nucleophile, phenoxide or phenol ... [Pg.87]

A -Methylation of the NH of heterocycles using 1 is also known as exemplified by the methylation of indole/ The interesting mechanism is delineated below. O-methylation of weak acids such as phenols, carboxylic acids and oximes as well as 5-methylation such as A -phenylisorhodanine, certain thioketones, and dithiocarboxylic acids have also been reported." ... [Pg.11]

Mono-substitution occurs most readily in the stepwise replacement of the halogen substituents of 2,4,6-trichloro-s-triazine with aqueous methanol and sodium bicarbonate (30°, 30 min), the monomethoxy derivative (324) is obtained on heating (65°, 30 min), the disubstitu-ted derivative is formed and on brief heating (65°) with the more basic sodium carbonate or methanolic sodium hydroxide (25°, 3 hr) complete methoxylation (320) occurs. Ethanolic ethoxide (25°, 1 hr) or sodium carbonate (35°) is sufficient to give complete ethoxy-dechlorination. The corresponding phenoxy derivatives are obtained on treatment with one (0°), two (15°, 1 hr), or three equivalents (25-70°, 3 hr) of various sodium phenoxides in aqueous acetone. The stepwise reaction with phenols, alcohols, or thiols proceeds in better yield in organic solvents (acetone or chloroform) with collidine or 2,6-lutidine as acid acceptors than in aqueous sodium bicarbonate. ... [Pg.302]

Compounds with a smaller/C., and larger pKa are less acidic, whereas compounds with a larger/Ca and smaller plsimple alcohols like methanol and ethanol are about as acidic as water but substituent groups can have a significant effect, tert-Butyl alcohol is a weaker acid, for instance, and 2,2,2-trifluoroethanol is stronger. Phenols and thiols, the sulfur analogs of alcohols, are substantially more acidic than water. [Pg.603]


See other pages where Phenol as acid is mentioned: [Pg.369]    [Pg.369]    [Pg.949]    [Pg.951]    [Pg.1205]    [Pg.969]    [Pg.969]    [Pg.969]    [Pg.971]    [Pg.369]    [Pg.369]    [Pg.949]    [Pg.951]    [Pg.1205]    [Pg.969]    [Pg.969]    [Pg.969]    [Pg.971]    [Pg.49]    [Pg.703]    [Pg.490]    [Pg.419]    [Pg.552]    [Pg.172]    [Pg.199]    [Pg.907]    [Pg.220]    [Pg.259]    [Pg.281]    [Pg.127]    [Pg.76]   
See also in sourсe #XX -- [ Pg.873 ]




SEARCH



A-Phenols

Acidic phenols

Alcohols, Phenols and Carboxylic Acids as Asymmetric Organocatalysts

Benzene and Phenol as Probes for Acid Sites

Demethylation of a phenolic ether by hydriodic acid

Demethylation of a phenolic ether hydriodic acid

Phenol acidity

Phenol acids

Phenolic acidity

Phenolic acids

Phenolics phenolic acids

Reactions of Phenols as Acids

© 2024 chempedia.info