Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeability applications

Kalyanaraman, C. and Jacobson, M.P. (2007) An atomistic model of passive membrane permeability application to a series of FDA approved drugs. Journal of Computer-Aided Molecular Design, 21, 675-679. [Pg.143]

Type Supply form Polymer dry weight content Recommended solvents or diluents Solubility/permeability Applications... [Pg.555]

Gas transport through polymers is an area of growing interest as materials with unique transport properties continue to find use in new, specialized applications ranging from extended life tennis balls (1) to natural gas separation systems (2.) Concurrent with this increased interest is the desire to understand on a molecular level what determines the gas permeability properties of a particular material. The ability to better relate polymer molecular structure to gas transport properties is crucial in any attempt to rationally design materials for specific permeability applications such as gas barriers. [Pg.159]

A magnificent property of PVDC films is their low vapor and gas permeability. Application of even very fine PVDC layers in co-extruded multilayered films imparts them with perfect barrier characteristics. Oriented PVDC films are highly strong, elastic and resist well depression and tearing, although they lose these properties at elevated (60°C) and lowered (—20°C) temperatures. [Pg.86]

Fu BM, Tsay R, Curry FE, Weinbaum S, 1994. A junction-orifice-entrance layer model for capillary permeability Application to frog mesenteric capillaries. ASME J Biomech Eng. 116 502. [Pg.284]

One important application of amperometry is in the construction of chemical sensors. One of the first amperometric sensors to be developed was for dissolved O2 in blood, which was developed in 1956 by L. C. Clark. The design of the amperometric sensor is shown in Figure 11.38 and is similar to potentiometric membrane electrodes. A gas-permeable membrane is stretched across the end of the sensor and is separated from the working and counter electrodes by a thin solution of KCl. The working electrode is a Pt disk cathode, and an Ag ring anode is the... [Pg.519]

Use of filter aids is a technique frequently applied for filtrations in which problems of slow filtration rate, rapid medium blinding, or un-satisfactoiy filtrate clarity arise. Filter aids are granular or fibrous solids capable of forming a highly permeable filter cake in which veiy fine solids or slimy, deformable floes may be trapped. Application of filter aids may allow the use of a much more permeable filter medium than the clarification would require to produce filtrate of the same quahty by depth filtration. [Pg.1708]

Gas Dehydration Water is extremely permeable in polymer membranes. Dehydration of air and other gases is a growing membrane application. [Pg.2047]

In suspension processes the fate of the continuous liquid phase and the associated control of the stabilisation and destabilisation of the system are the most important considerations. Many polymers occur in latex form, i.e. as polymer particles of diameter of the order of 1 p.m suspended in a liquid, usually aqueous, medium. Such latices are widely used to produce latex foams, elastic thread, dipped latex rubber goods, emulsion paints and paper additives. In the manufacture and use of such products it is important that premature destabilisation of the latex does not occur but that such destabilisation occurs in a controlled and appropriate manner at the relevant stage in processing. Such control of stability is based on the general precepts of colloid science. As with products from solvent processes diffusion distances for the liquid phase must be kept short furthermore, care has to be taken that the drying rates are not such that a skin of very low permeability is formed whilst there remains undesirable liquid in the mass of the polymer. For most applications it is desirable that destabilisation leads to a coherent film (or spongy mass in the case of foams) of polymers. To achieve this the of the latex compound should not be above ambient temperature so that at such temperatures intermolecular diffusion of the polymer molecules can occur. [Pg.181]

A sufficiently low water vapour permeability for many packaging, building and agricultural applications. [Pg.241]

Compared with more common plastics used as packaging materials, the compound does have some disadvantages, such as a high water vapour permeability and limited heat resistance, losing dimensional stability at about 70°C. It is also substantially more expensive than the high-tonnage polyolefins. Last but not least its biodegradability means that it must be used in applications that will have completed their function within a few months of the manufacture of the polymer compound. [Pg.627]

Applicability/Limitations. In-situ treatment can be used when it is uneconomical to haul or when infeasible or uneconomical to dig or pump the contaminated waste matrix for treatment in a reactor. This approach should be used whenever excavation or removal causes an increased threat to human health. It can reduce the cost of a remediation program. Because chemicals are applied to the contaminated waste matrix, specifically soil and groundwater, a potential exists for reaction with the soil. Permeability problems can occur as the result of precipitate formation. This can result in inadequate mixing of the contaminant with the treatment chemical. Gas generation may also occur. [Pg.149]

Different filter media, regardless of the specific application, are distinguished by a number of properties. The principal properties of interest are the permeability of the medium relative to a pure liquid, its retention capacity relative to solid particles of known size and the pore size distribution. These properties are examined in a laboratory environment and are critical for comparing different filter media. [Pg.149]

Once the precoating stage is completed the process slurry is pumped into the filter, the forming cake is retained on the plates and the filtrate flows to further processing. When the solids are fine and slow to filter a body-aid is added to the feed slurry in order to enhance cake permeability. However, it should be kept in mind that the addition of body-aid increases the solids concentration in the feed so it occupies additional volume between the plates and increases the amount of cake for disposal. Likewise, for all those applications when the cake is the product, precoat and filter-aid may not be used since they mix and discharge together with the cake. [Pg.187]

Special groundwood is becoming popular in recent years since it is combustible and reduces the high cost of disposal. There are nowadays manufacturers that grind, wash and classify special timber to permeabilities which can suit a wide range of applications. [Pg.192]

Permeability. The low density of plastics is an advantage in many situations but the relatively loose packing of the molecules means that gases and liquids can permeate through the plastic. This can be important in many applications such as packaging or fuel tanks. It is not possible to generalise about the performance of plastics relative to each other or in respect to the performance of a specific plastic in contact with different liquids and gases. [Pg.35]

Sec. Ill is concerned with the description of models with directional associative forces, introduced by Wertheim. Singlet and pair theories for these models are presented. However, the main part of this section describes the density functional methodology and shows its application in the studies of adsorption of associating fluids on partially permeable walls. In addition, the application of the density functional method in investigations of wettability of associating fluids on solid surfaces and of capillary condensation in slit-like pores is presented. [Pg.171]

The singlet-level theories have also been applied to more sophisticated models of the fluid-solid interactions. In particular, the structure of associating fluids near partially permeable surfaces has been studied in Ref. 70. On the other hand, extensive studies of adsorption of associating fluids in a slit-like [71-74] and in spherical pores [75], as well as on the surface of spherical colloidal particles [29], have been undertaken. We proceed with the application of the theory to more sophisticated impermeable surfaces, such as those of crystalline solids. [Pg.182]

In Sec. 3 our presentation is focused on the most important results obtained by different authors in the framework of the rephca Ornstein-Zernike (ROZ) integral equations and by simulations of simple fluids in microporous matrices. For illustrative purposes, we discuss some original results obtained recently in our laboratory. Those allow us to show the application of the ROZ equations to the structure and thermodynamics of fluids adsorbed in disordered porous media. In particular, we present a solution of the ROZ equations for a hard sphere mixture that is highly asymmetric by size, adsorbed in a matrix of hard spheres. This example is relevant in describing the structure of colloidal dispersions in a disordered microporous medium. On the other hand, we present some of the results for the adsorption of a hard sphere fluid in a disordered medium of spherical permeable membranes. The theory developed for the description of this model agrees well with computer simulation data. Finally, in this section we demonstrate the applications of the ROZ theory and present simulation data for adsorption of a hard sphere fluid in a matrix of short chain molecules. This example serves to show the relevance of the theory of Wertheim to chemical association for a set of problems focused on adsorption of fluids and mixtures in disordered microporous matrices prepared by polymerization of species. [Pg.294]

Let us proceed with the second interesting example concerning application of the ROZ equations. We would Hke first to mention that simple fluids confined to slits with permeable membranes have been studied by both computer simulations and theory, see, e.g.. Refs. 49-52. The simplest way is to visualize a permeable membrane as a barrier of finite height and width. To our best knowledge, no studies of a system containing multiple barriers of a more sophisticated geometry than the sHt-Hke have been undertaken so... [Pg.311]

Our main focus in this chapter has been on the applications of the replica Ornstein-Zernike equations designed by Given and Stell [17-19] for quenched-annealed systems. This theory has been shown to yield interesting results for adsorption of a hard sphere fluid mimicking colloidal suspension, for a system of multiple permeable membranes and for a hard sphere fluid in a matrix of chain molecules. Much room remains to explore even simple quenched-annealed models either in the framework of theoretical approaches or by computer simulation. [Pg.341]

The most important application of semi-permeable membranes is in separations based on reverse osmosis. These membranes generally have pores smaller than 1 nm. The pressure across the semi-permeable membranes for reverse osmosis is generally much larger than those for ultrafiltration, for example. This is because reverse osmosis is usually used for small molecules which have a much higher osmotic pressure, because of the higher number density, than the colloids separated in ultrafiltration. As a result reverse osmosis membranes have to be much more robust than ultrafiltration membranes. Since the focus of our discussion in this chapter will be on reverse osmosis based separations, we will describe these membranes in greater detail. [Pg.778]

The most significant application of reverse osmosis has been in the field of desalination to produce drinking water. Other important apphcations include the treatment of industrial waste water, concentration of fruit juices, and concentration of weak solutions such as aqueous ethanol [3-6]. The rest of the chapter will focus almost entirely on semi-permeable membranes used for reverse osmosis based applications. We chose this focus in view of the importance of reverse osmosis as a rather efficient separation technique for separating a wide range of solutions, especially very dilute solutions—which are usually notoriously difficult to handle using conventional techniques such as distillation. [Pg.779]


See other pages where Permeability applications is mentioned: [Pg.20]    [Pg.533]    [Pg.20]    [Pg.533]    [Pg.403]    [Pg.171]    [Pg.76]    [Pg.180]    [Pg.470]    [Pg.358]    [Pg.1192]    [Pg.2300]    [Pg.266]    [Pg.235]    [Pg.100]    [Pg.607]    [Pg.724]    [Pg.813]    [Pg.109]    [Pg.340]    [Pg.374]    [Pg.149]    [Pg.192]    [Pg.522]    [Pg.312]    [Pg.778]    [Pg.785]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Applications of the Permeability Equation

Oxygen permeability applications

© 2024 chempedia.info