Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane electrodes, potentiometric

One important application of amperometry is in the construction of chemical sensors. One of the first amperometric sensors to be developed was for dissolved O2 in blood, which was developed in 1956 by L. C. Clark. The design of the amperometric sensor is shown in Figure 11.38 and is similar to potentiometric membrane electrodes. A gas-permeable membrane is stretched across the end of the sensor and is separated from the working and counter electrodes by a thin solution of KCl. The working electrode is a Pt disk cathode, and an Ag ring anode is the... [Pg.519]

Potentiometric electrodes are divided into two classes metallic electrodes and membrane electrodes. The smaller of these classes are the metallic electrodes. Electrodes of the first kind respond to the concentration of their cation in solution thus the potential of an Ag wire is determined by the concentration of Ag+ in solution. When another species is present in solution and in equilibrium with the metal ion, then the electrode s potential will respond to the concentration of that ion. Eor example, an Ag wire in contact with a solution of Ck will respond to the concentration of Ck since the relative concentrations of Ag+ and Ck are fixed by the solubility product for AgCl. Such electrodes are called electrodes of the second kind. [Pg.532]

Radio, N. Komijenovic, J. Potentiometric Determination of an Overall formation Gonstant Using an Ion-Selective Membrane Electrode, /. Chem. Educ. 1993, 70, 509-511. [Pg.534]

To measure the e.m.f. the electrode system must be connected to a potentiometer or to an electronic voltmeter if the indicator electrode is a membrane electrode (e.g. a glass electrode), then a simple potentiometer is unsuitable and either a pH meter or a selective-ion meter must be employed the meter readings may give directly the varying pH (or pM) values as titration proceeds, or the meter may be used in the millivoltmeter mode, so that e.m.f. values are recorded. Used as a millivoltmeter, such meters can be used with almost any electrode assembly to record the results of many different types of potentiometric titrations, and in many cases the instruments have provision for connection to a recorder so that a continuous record of the titration results can be obtained, i.e. a titration curve is produced. [Pg.574]

In measurements of conductivity, no electrochemical reactions occur. Differences in conductivity are due to differences in the ionic strengths of solutions. An alternating potential is applied to the solution at a known potential. The current is measured and the conductivity in Siemens/cm calculated.16 In potentiometry, the analyte is presumed to undergo no electrochemical reaction. The potential at the electrode changes due to changes in potential across the surface of the membrane in a membrane electrode or at the electrode surface of a solid electrode. The most familiar example of a potentiometric electrode is the pH electrode. In amperometry, current does flow, due to reduction or oxidation of the substance being analyzed. [Pg.219]

The behavior of potentiometric and pulsed galvanostatic polyion sensors can be directly compared. Figure 4.11 shows the time trace for the resulting protamine calibration curve in 0.1 M NaCl, obtained with this method (a) and with a potentiometric protamine membrane electrode (b) analogous to that described in [42, 43], Because of the effective renewal of the electrode surface between measuring pulses, the polyion response in (a) is free of any potential drift, and the signal fully returns to baseline after the calibration run. In contrast, the response of the potentiometric protamine electrode (b) exhibits very strong potential drifts. [Pg.115]

R.A. Llenado, Potentiometric response of the calcium selective membrane electrode in the presence of surfactants ,... [Pg.114]

In some applications, silver/silver chloride or calomel electrodes are considered cumbersome to use and maintain. More importantly, they are extremely difficult to miniaturize particularly with regard to their combined use with potentiometric membrane electrodes (see Section 18a.4.5.4) that have been fabricated into highly miniaturized and compact screen-printed sensor arrays for clinical use. Thus, several reference electrodes are manufactured with the same polymeric materials that are needed to design the responsive ion-selective membranes [7]. Incorporation of suitable active agents into such membranes leads to potentiometric responses that are ideally independent of the sample... [Pg.631]

Although not strictly relevant to amperometric sensor technology, various metalloporphyrins [Co(III), Mn(III), Fe(III) Fig. 45] have been shown to sense anions potentiometrically with selectivity sequences dependent on the centrally bound metal (Amman et al., 1986 De et al., 1994). For example the anti-Hofmeister selectivity sequence SCN" > I" > CIO4 > N02 > Br > Cl- > NOJ was exhibited by PVC membrane electrodes containing [87]. [Pg.58]

The classic potentiometric enzyme electrode is a combination of an ion-selective electrode-based sensor and an immobilized (insolubilized) enzyme. Few of the many enzyme electrodes based on potentiometric ion- and gas-selective membrane electrode transducers have been included in commercially available instruments for routine measurements of biomolecules in complex samples such as blood, urine or bioreactor media. The main practical limitation of potentiometric enzyme electrodes for this purpose is their poor selectivity, which does not arise from the biocatalytic reaction, but from the response of the base ion or gas transducer to endogenous ionic and gaseous species in the sample. [Pg.129]

The potentiometric method has been used for the determination of pure procaine base or its hydrochloride salt, and for procaine in pharmaceutical formulations. Lemahieu and Resibois reported the potentiometric determination of procaine hydrochloride with silver nitrate in dimethyl sulfoxide [64], Procaine was potentiometrically analyzed using a procaine-selective membrane electrode [65]. Abou-Ouf et al. have used potentiometry to determine procaine and other drugs in ointments and creams with dibromohydantoins [66]. [Pg.422]

The direct potentiometric determination (using a cation-selective membrane electrode) of procaine and some physiologically active amines in pharmaceuticals has been reported [70]. The sensing membrane was formed from PVC plasticized with dibutyl phthalate, and contained 0.1 mM trioctyloxybenzene-sulfonic acid in dibutyl phthalate. The reference solution was a mixture of 1 mM solution of the organic base and hydrochloric acid. Response was found to be linear over a wide concentration range, and the method was highly selective. [Pg.422]

Ion-selective sensors for chloride are commercially available [103]. Both fundamental and practical information concerning the theory, design, and operation of chloride-selective electrodes is available from a recent textbook [57]. Sensor membranes for potentiometric chloride detection have been formed from Ag2 S (as ion... [Pg.285]

A series of ion-selective membrane electrodes based on neutral carrier solvent polymeric membranes has been designed for the potentiometric determination of ion activities (for reviews see Refs. 52, 65). Systems with analytically relevant selectivities for Li+, Na+, K+, NHJ, Ca2+, and Ba2+, are available. In agreement with the treatment given in Sections III and IV, the ions preferred in potentiometric studies may be transported preferentially through the same membranes in electrodialytic experiments. So far, selective carrier transports have been realized for Li+, Na+, K+, and Ca2+. [Pg.303]

How analytical methods deal with interferences is one of the more ad hoc aspects of method validation. There is a variety of approaches to studying interference, from adding arbitrary amounts of a single interferent in the absence of the analyte to establish the response of the instrument to that species, to multivariate methods in which several interferents are added in a statistical protocol to reveal both main and interaction effects. The first question that needs to be answered is to what extent interferences are expected and how likely they are to affect the measurement. In testing blood for glucose by an enzyme electrode, other electroactive species that may be present are ascorbic acid (vitamin C), uric acid, and paracetamol (if this drug has been taken). However, electroactive metals (e.g., copper and silver) are unlikely to be present in blood in great quantities. Potentiometric membrane electrode sensors (ion selective electrodes), of which the pH electrode is the... [Pg.237]

By running a potentiometric precipitation titration, we can determine both the compositions of the precipitate and its solubility product. Various cation- and anion-selective electrodes as well as metal (or metal amalgam) electrodes work as indicator electrodes. For example, Coetzee and Martin [23] determined the solubility products of metal fluorides in AN, using a fluoride ion-selective LaF3 single-crystal membrane electrode. Nakamura et al. [2] also determined the solubility product of sodium fluoride in AN and PC, using a fluoride ion-sensitive polymer membrane electrode, which was prepared by chemically bonding the phthalocyanin cobalt complex to polyacrylamide (PAA). The polymer membrane electrode was durable and responded in Nernstian ways to F and CN in solvents like AN and PC. [Pg.186]

Ion solvation has been studied extensively by potentiometry [28, 31]. Among the potentiometric indicator electrodes used as sensors for ion solvation are metal and metal amalgam electrodes for the relevant metal ions, pH glass electrodes and pH-ISFETs for H+ (see Fig. 6.8), univalent cation-sensitive glass electrodes for alkali metal ions, a CuS solid-membrane electrode for Cu2+, an LaF3-based fluoride electrode for l , and some other ISEs. So far, method (2) has been employed most often. The advantage of potentiometry is that the number and the variety of target ions increase by the use of ISEs. [Pg.193]

New polymer membrane-based ISEs for nitrate and carbonate exhibit detection limits and selectivities that may be applicable for ocean measurements. In addition, a number of these ISEs can be used as internal transducers for the design of useful potentiometric gas sensors. For example, dissolved C02 can be detected potentiometrically by using either a glass membrane electrode or a polymer-based carbonate ISE, in conjunction with an appropriate reference electrode, behind an outer gas permeable membrane. Novel differential pC02 sensors based on two polymer membrane-type pH sensors have also been developed recently. [Pg.50]

Enantioselective, potentiometric membrane electrodes design, mechanism of potential development and applications for pharmaceutical and biomedical analysis... [Pg.53]

Enantioselective, potentiometric membrane electrodes (EPMEs) are proposed for the potentiometric detection of the enantiomers [2,10]. The advantages of utilization of these electrodes over amperometric biosensors and immunosensors are a longer lifetime, a large working concentration range, no dilution required for the samples and possibility of decreasing of limit of detection by utilization of KC1 0.1 mol/L as internal solution [2],... [Pg.54]

Ephedrine is the pharmacologically active enantiomers of ephe-drine. The enantiopurity tests for (-)-ephedrine can be performed using a peroctylated y-cyclodextrin based plastic membrane electrode [26], Bis (l-butylpentyl)adipate (BBPAP) was used as plasticizer and 10 3 mol/L NH4C1 as inner solution. The slope of the electrode is 60 mV/decade of concentration, and the potentiometric enantioselectivity coefficient is less than 10 4 The limit of detection is of 10 7 mol/L magnitude order. [Pg.60]


See other pages where Membrane electrodes, potentiometric is mentioned: [Pg.103]    [Pg.458]    [Pg.151]    [Pg.152]    [Pg.338]    [Pg.271]    [Pg.363]    [Pg.261]    [Pg.310]    [Pg.94]    [Pg.640]    [Pg.766]    [Pg.71]    [Pg.232]    [Pg.246]    [Pg.299]    [Pg.103]    [Pg.142]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]   
See also in sourсe #XX -- [ Pg.2 , Pg.244 ]




SEARCH



Membrane electrodes

Membrane electrodes potentiometric biosensors

Membranes potentiometric measuring electrode

Potentiometric

Potentiometric membrane

© 2024 chempedia.info