Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PEN, properties

PEN polymers, 20 38, 44. See also Poly(ethylene 2,6-naphthalenedicarboxylate) (PEN) properties of, 20 70 Penta-4-tolylantimony, 3 78 Pentaammine complexes, aquation of, 13 442... [Pg.679]

Amoco Chemical Company, PEN properties, Pamphlet GTSR-B, Amoco Chemical Company, Chicago, IL, July 15, 1984. [Pg.192]

For qualitative measurements, we used Likert-scale questionnaires about the users perceived difficulty level of specific actions with an interface, such as note-taking, submission, and erasing. For quantitative measurements, we instrumented the two interfaces, and logged important events such as pen property changes, strokes, gestures, slide navigation, and submission. [Pg.24]

PEN film for audio- and videotape and various electronic appHcations and blow molded PEN containers for hot-fill appHcations are already being marketed in Japan. NDA is unlikely to ever become as inexpensive as terephthaUc acid but novel NDA-based polyesters will become available if a market need exists. One example could be the experimental polyester PBN (Celanese Corp.) this is the NDA analogue of PBT, poly(l,4-butylene naphthalene-2,6-dicarboxylate) [28779-82-0]. It has a high rate of crystallization, faster even than that of PBT, and its combination of physical properties is weU-suited for injection molding. [Pg.293]

Structurally the difference between PEN and PET is in the double (naphthenic) ring of the former compared to the single (benzene) ring of the latter. This leads to a stiffer chain so that both and are higher for PEN than for PET (Tg is 124°C for PEN, 75°C for PET is 270-273°C for PEN and 256-265°C for PET). Although PEN crystallises at a slower rate than PET, crystallization is (as with PET) enhanced by biaxial orientation and the barrier properties are much superior to PET with up to a fivefold enhancement in some cases. (As with many crystalline polymers the maximum rate of crystallisation occurs at temperatures about midway between Tg and in the case of both PEN and PET). At the present time PEN is significantly more expensive than PET partly due to the economies of scale and partly due to the fact that the transesterification route used with PEN is inherently more expensive than the direct acid routes now used with PET. This has led to the availability of copolymers and of blends which have intermediate properties. [Pg.723]

Thin wall plastics are used to hot fill (injection and blow molded bottles, thermoformed containers, etc.) without sagging during filling and maintaining mechanical properties such as impact strength and stiffness in temperatures from at least —40°F to 250°F (—40°C to 120°C). Plastic used includes special grades of PEN, PET, PP, PS, and PVC. [Pg.239]

PET, PTT, and PBT have similar molecular structure and general properties and find similar applications as engineering thermoplastic polymers in fibers, films, and solid-state molding resins. PEN is significantly superior in terms of thermal and mechanical resistance and barrier properties. The thermal properties of aromatic-aliphatic polyesters are summarized in Table 2.6 and are discussed above (Section 2.2.1.1). [Pg.44]

TABLE 2.12 Physical Properties of Poly(ethylene terephthalate) (PET) and Polyethylene 2,6-naphthalate) (PEN) Polyester Fibers... [Pg.46]

Due to the high reaction temperatures required during the last stages of these syntheses, side reactions cannot be avoided. Acetaldehyde, carboxyl endgroups, and vinyl endgroups are formed during PET and PEN synthesis. The formation of 2,2/-oxydiethylene moieties in polymer chains by etherification of hydroxyl endgroups is also a well-known side reaction of EG polyester syntheses.264 These reactions should be carefully controlled since they can exert an important influence on polymer properties such as Ts, mechanical properties, hydrolytic stability, and discoloration. [Pg.71]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

Poly(ethylene naphthalate) (PEN), 20, 21, 25. See also PEN entries structure and properties of, 44-46 Poly(ethylene oxide) (PEO), 359 Polyethylenes... [Pg.596]

This section is completed with a brief review of the synthesis and properties of this epimer (20) of the precursor of thiazole in bacteria. This pentulose is conveniently accessible by an unconventional route (Scheme 19). Methyl 2,3 4,6-di-O-isopropylidene-a-D-mannopyranoside, readily available from methyl ot-D-mannopyranoside, is converted to the ketonic glycoside by butyllithium in 91% yield, following a method first published by Klemer and Rodemeyer43 and scaled up by Horton and Weckerle.44 This was converted by means of lithium hydroxide in a water-ether mixture into 3,5-0-benzylidene-l-deoxy-D-eryf/iro-2-pen-tulose in 55% yield. Hydrolysis to the free pentulose (20) proceeded in 73% yield in aqueous acetic acid. This product was obtained as a syrup with a characteristic absorption band at 1705 cm 1 as a film. Thus, there is a fair proportion of the open-chain ketone under these conditions, as with the D-threo epimer.45... [Pg.288]

The performance properties of PEN present opportunities for replacement of rayon or polyamide in carcass construction. The use of PEN cord in these applications is currently being evaluated in both Asia and Europe. PEN has demonstrated acceptable flexural fatigue equivalent to polyethylene terephthalate (PET) and rayon. It has equivalent toughness to rayon, which is important for sidewall impact resistance. PEN s superior mechanical properties also afford opportunities to use less fiber in carcass construction enabling production of lighter-weight, more fuel-efficient tires. [Pg.924]

Very hard, steel-gray metal. Hardens platinum. The International Prototype Meter in Paris consists of a Pt-Ir alloy. Its hardness and corrosion resistance is exploited in fountain-pen tips, spark plugs in powerful engines (airplanes), and electrical contacts. Used as a material in shells for nuclide batteries in satellites. Responsible for the iridescent properties of vapor-treated sunglasses. [Pg.73]

The properties of polyurethanes can be tailored by prudent selection of their constituent monomers. They can be converted into elastic foams, which are widely used in upholstery, and are used as covers for the handles of various tools and implements, such as the soft touch grips on bail-point pens and power tools. [Pg.36]

By using Hg-electrode-based junctions, the electrical properties of the highly conjugated units of hexa-pen-hexabenzocoronene (HBC) have been characterized [171]. The HBC unit was anchored to the Au metal surface in an Hg-based junction by a decanonanethiol tether (C19), as depicted in Fig. 9. Comparison of the electrical behaviour of three different junctions, whose interfaces are schematized... [Pg.100]

The above-mentioned results of the SSP of PET can be generally applied to other semicrystalline polyesters, such as poly(butylene terephthalate) (PBT), poly(tri-methylene terephthalate) PTT), polyethylene naphthalate) (PEN) or any other kind of semicrystalline co-polyester, as a result of their similar reaction behaviors. Most of the studies have been focused on PET and PBT due to their industrial importance. Meanwhile, the popularity of PEN is growing on account of the outstanding properties of this particular polymer. [Pg.213]

Although the superior properties of PEN have been known for many years, the unavailability of the naphthalate monomer has delayed the development of commercial markets, until relatively recently (1995) when the Amoco Chemical Company offered high purity naphthalene-2,6-dimethyl dicarboxylate (NDC) in amounts of up to 60 million pounds per year. This diester is produced by a five-step synthetic route, starting from the readily available compounds, o-xylene and 1,4-butadiene [3], Prior to this, the NDC diester was obtained by extraction of 2,6-dimethylnaphthalene (DMN) from petroleum streams, where it was present in relatively low abundance. Oxidation of DMN to crude 2,6-naphthalene dixcarboxylic (NDA) is conducted by a similar process to that used for conversion of p-xylcnc to purified terephthalic acid (TA), crude NDA is esterified with methanol, and is then distilled to yield high purity NDC. Other companies (e.g. the Mitsubishi Gas Chemical Company) followed Amoco s introduction with lesser amounts of NDC. Teijin [4] has manufactured PEN for many years for its own captive uses in films. [Pg.324]


See other pages where PEN, properties is mentioned: [Pg.328]    [Pg.328]    [Pg.328]    [Pg.328]    [Pg.221]    [Pg.108]    [Pg.130]    [Pg.394]    [Pg.448]    [Pg.296]    [Pg.296]    [Pg.91]    [Pg.723]    [Pg.724]    [Pg.150]    [Pg.467]    [Pg.904]    [Pg.25]    [Pg.45]    [Pg.46]    [Pg.596]    [Pg.305]    [Pg.925]    [Pg.432]    [Pg.323]    [Pg.620]    [Pg.281]    [Pg.414]    [Pg.1229]    [Pg.302]    [Pg.341]    [Pg.151]   


SEARCH



PEN

Pen, pens

Penning

Properties of PEN

© 2024 chempedia.info