Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

PCM,

Let us consider one more physical phenomenon, which can influence upon PT sensitivity and efficiency. There is a process of liquid s penetration inside a capillary, physical nature of that is not obvious up to present time. Let us consider one-side-closed conical capillary immersed in a liquid. If a liquid wets capillary wall, it flows towards cannel s top due to capillary pressure pc. This process is very fast and capillary imbibition stage is going on until the liquid fills the channel up to the depth l , which corresponds the equality pcm = (Pc + Pa), where pa - atmospheric pressure and pcm - the pressure of compressed air blocked in the channel. [Pg.615]

If reliable quantum mechanical calcnlations of reactant and transition state stnictures in vacnnm are feasible, treating electrostatic solvent effects on the basis of SRCF-PCM rising cavity shapes derived from methods... [Pg.838]

As with SCRF-PCM only macroscopic electrostatic contribntions to the Gibbs free energy of solvation are taken into account, short-range effects which are limited predominantly to the first solvation shell have to be considered by adding additional tenns. These correct for the neglect of effects caused by solnte-solvent electron correlation inclnding dispersion forces, hydrophobic interactions, dielectric saturation in the case of... [Pg.838]

Koutsos V, van der Vegte E W, Grim PCM and Hadziioannou G Isolated polymer chains via mixed self-assembled monolayers morphology and friction studied by scanning force microscopy Macromolecules 116-23... [Pg.2641]

A yet more realistic cavity shape is that obtained from the van der Waals radii of the atoms of the solute. This is the approach taken in the polarisable continuum method (PCM) [Miertus et al. 1981], which has been implemented in a variety of ab initio and semi-empirical quantu/rt mechanical programs. Due to the non-analytical nature of the cavity shapes in the PCM approach, it is necessary to calculate numerically. The cavity surface is divided... [Pg.612]

The PCM algorithm is as follows. First, the cavity siuface is determined from the van der Waals radii of the atoms. That fraction of each atom s van der Waals sphere which contributes to the cavity is then divided into a nmnber of small surface elements of calculable surface area. The simplest way to to this is to define a local polar coordinate frame at tlie centre of each atom s van der Waals sphere and to use fixed increments of AO and A(p to give rectangular surface elements (Figure 11.22). The surface can also be divided using tessellation methods [Paschual-Ahuir d al. 1987]. An initial value of the point charge for each surface element is then calculated from the electric field gradient due to the solute alone ... [Pg.612]

Ire boundary element method of Kashin is similar in spirit to the polarisable continuum model, lut the surface of the cavity is taken to be the molecular surface of the solute [Kashin and lamboodiri 1987 Kashin 1990]. This cavity surface is divided into small boimdary elements, he solute is modelled as a set of atoms with point polarisabilities. The electric field induces 1 dipole proportional to its polarisability. The electric field at an atom has contributions from lipoles on other atoms in the molecule, from polarisation charges on the boundary, and where appropriate) from the charges of electrolytes in the solution. The charge density is issumed to be constant within each boundary element but is not reduced to a single )oint as in the PCM model. A set of linear equations can be set up to describe the electrostatic nteractions within the system. The solutions to these equations give the boundary element harge distribution and the induced dipoles, from which thermodynamic quantities can be letermined. [Pg.614]

The Onsager model describes the system as a molecule with a multipole moment inside of a spherical cavity surrounded by a continuum dielectric. In some programs, only a dipole moment is used so the calculation fails for molecules with a zero dipole moment. Results with the Onsager model and HF calculations are usually qualitatively correct. The accuracy increases significantly with the use of MP2 or hybrid DFT functionals. This is not the most accurate method available, but it is stable and fast. This makes the Onsager model a viable alternative when PCM calculations fail. [Pg.209]

There are many technical details involved in SCRF calculations, many of which the user can control. Readers of this book are advised to use the default values as much as possible unless they have carefully examined the original literature and tested their modifications. PCM methods are generally more accurate than the Onsager and COSMO methods. [Pg.212]

The most popular of the SCRF methods is the polarized continuum method (PCM) developed by Tomasi and coworkers. This technique uses a numerical integration over the solute charge density. There are several variations, each of which uses a nonspherical cavity. The generally good results and ability to describe the arbitrary solute make this a widely used method. Flowever, it is sensitive to the choice of a basis set. Some software implementations of this method may fail for more complex molecules. [Pg.212]

The original PCM method uses a cavity made of spherical regions around each atom. The isodensity PCM model (IPCM) uses a cavity that is defined by an isosurface of the electron density. This is defined iteratively by running SCF calculations with the cavity until a convergence is reached. The self-consistent isodensity PCM model (SCI-PCM) is similar to IPCM in theory, but different in implementation. SCI-PCM calculations embed the cavity calculation in the SCF procedure to account for coupling between the two parts of the calculation. [Pg.212]

The conductor-like screening model (COSMO) is a continuum method designed to be fast and robust. This method uses a simpler, more approximate equation for the electrostatic interaction between the solvent and solute. Line the SMx methods, it is based on a solvent accessible surface. Because of this, COSMO calculations require less CPU time than PCM calculations and are less likely to fail to converge. COSMO can be used with a variety of semiempirical, ah initio, and DFT methods. There is also some loss of accuracy as a result of this approximation. [Pg.212]

PCM when quantum mechanics is necessary, but explicit solvent simulations are too CPU-intensive. [Pg.213]

OPW (orthogonalized plane wave) a band-structure computation method P89 (Perdew 1986) a gradient corrected DFT method parallel computer a computer with more than one CPU Pariser-Parr-Pople (PPP) a simple semiempirical method PCM (polarized continuum method) method for including solvation effects in ah initio calculations... [Pg.366]

SCF (self-consistent field) procedure for solving the Hartree-Fock equations SCI-PCM (self-consistent isosurface-polarized continuum method) an ah initio solvation method... [Pg.368]

Tomasi s Polarized Continuum Model (PCM) defines the cavity as the union of a series of interlocking atomic spheres. The effect of polarization of the solvent continuum is represented numerically it is computed by numerical integration rather... [Pg.237]

The Isodensity PCM (IPCM) model defines the cavity as an isodensity surface of the molecule. This isodensity is determined by an iterative process in which an SCF cycle is performed and converged using the current isodensity cavity. The resultant wavefunction is then used to compute an updated isodensity surface, and the cycle is repeated until the cavity shape no longer changes upon completion of the SCF. [Pg.238]

Compute the energies of the three structures using the SCI-PCM SCRF model and the B3LYP/6-31+G(d) model chemistry. ... [Pg.246]

Both the MP2 Onsager calculation and the IPCM calculaton are in good agreement with experiment. The SCI-PCM and Hartree-Fock Onsager SCRF calculations perform significantly less well for this problem. ... [Pg.248]

Over the years, many workers have addressed the problem of choice of cavity and the reaction field. Tomasi s polarized continuum model (PCM) defines the cavity as a series of interlocking spheres. The isodensity PCM (IPCM) defines the cavity as an isodensity surface of the molecule. This isodensity surface is determined iteratively. The self-consistent isodensity polarized continuum model (SQ-PCM) gives a further refinement in that it allows for a full coupling between the cavity shape and the electron density. [Pg.259]


See other pages where PCM, is mentioned: [Pg.838]    [Pg.1726]    [Pg.613]    [Pg.613]    [Pg.613]    [Pg.27]    [Pg.499]    [Pg.385]    [Pg.424]    [Pg.651]    [Pg.52]    [Pg.245]    [Pg.246]    [Pg.319]    [Pg.237]    [Pg.238]    [Pg.242]    [Pg.248]    [Pg.249]    [Pg.300]    [Pg.301]    [Pg.500]    [Pg.259]   
See also in sourсe #XX -- [ Pg.598 ]

See also in sourсe #XX -- [ Pg.212 ]

See also in sourсe #XX -- [ Pg.259 ]

See also in sourсe #XX -- [ Pg.193 , Pg.194 , Pg.196 ]

See also in sourсe #XX -- [ Pg.259 ]

See also in sourсe #XX -- [ Pg.23 , Pg.24 , Pg.26 , Pg.37 , Pg.46 ]

See also in sourсe #XX -- [ Pg.598 ]

See also in sourсe #XX -- [ Pg.309 ]

See also in sourсe #XX -- [ Pg.212 ]




SEARCH



C-PCM

Conductor PCM

Conductor-like PCM

D-PCM

Deep-UV PCM

IEF-PCM

IEF-PCM method

Isodensity PCM

Manipulating PCM

Microencapsulated PCM

Microencapsulated PCMs

NP-PCMs

Nano-encapsulated PCMs

Nanoparticle-enhanced PCM

Novolak deep-UV PCM

Organic PCMs

Outline of the PCM

PCM fibre

PCM induced charges

PCM method

PCM model

PCM solvation model

PCM-TDDFT

PCMs

PCMs

Phase Change Materials (PCMs)

Polarizable continuum model (PCM

Polarizable continuum solvation models PCMs)

SCI-PCM

Salt-based PCMs

Self-consistent isodensity PCM

Smart Use of PCMs

Software PCMS)

The PCM Model

The PCM-CC-PTE Approximation

The family of PCM models

Three-layer RIE PCM

Two-layer deep-UV PCM

Two-layer deep-UV PCM system

Two-layer spun-on RIE PCM

Type of PCM

UAHF PCM

Wet-etch PCM

© 2024 chempedia.info