Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conductor PCM

To account for indirect solvent effects, solvation models must allow for geometry optimizations and frequency calculations including the solute-solvent interactions. Indeed, many ab initio continuum solvation models and in particular those belonging to the family of the PCM [3] provide analytical first and second derivatives of the free energy with respect to the nuclear coordinates [4,5], In the following we shall present in detail the formalism for the derivatives in the PCM and Conductor-PCM (CPCM) [6] models. [Pg.314]

Using mPWlPW/6-31G(d) and the UAHF atomic radii in Gaussian. Using B3LYP/6-31G(d) and conductor-PCM in GAMESS. [Pg.34]

The conductor-like screening model (COSMO) is a continuum method designed to be fast and robust. This method uses a simpler, more approximate equation for the electrostatic interaction between the solvent and solute. Line the SMx methods, it is based on a solvent accessible surface. Because of this, COSMO calculations require less CPU time than PCM calculations and are less likely to fail to converge. COSMO can be used with a variety of semiempirical, ah initio, and DFT methods. There is also some loss of accuracy as a result of this approximation. [Pg.212]

The Polarizable Continuum Model (PCM) employs a van der Waals surface type cavity, a detailed description of the electrostatic potential, and parameterizes the cavity/ dispersion contributions based on the surface area. The COnductor-like Screening... [Pg.396]

In addition to these external electric or magnetic field as a perturbation parameter, solvents can be another option. Solvents having different dielectric constants would mimic different field strengths. In the recent past, several solvent models have been used to understand the reactivity of chemical species [55,56]. The well-acclaimed review article on solvent effects can be exploited in this regard [57]. Different solvent models such as conductor-like screening model (COSMO), polarizable continuum model (PCM), effective fragment potential (EFP) model with mostly water as a solvent have been used in the above studies. [Pg.374]

Conductor-like screening model (COSMO) is one of variants of PCM method [29]. In this method, the cavity is considered to be embedded in a conductor with an infinite dielectric constant [29]. An extension to this method, called COSMO-RS... [Pg.385]

Since its original description at the semiempirical level, COSMO has also been generalized to the ab initio and density functional levels of theory as well (Klamt et al. 1998). In addition, conductor-like modifications of the PCM formalism have also been described, and to distinguish between the conductor-like version and the original (dielectric) version, the acronyms C-PCM and D-PCM have been adopted for the two, respectively (Barone and Cossi 1998). [Pg.405]

A tremendous cost savings is realized by the multiplexing of signals due to the elimination of many multi-conductor cables and thousands of field terminations. Also, because the PCMs are remote from the central control room, they can be installed in the equipment modules. This means that each equipment module can be virtually stand-alone in terms of electrical and control systems, thus allowing almost complete prefabrication in the fabrication yard the only remaining field work is connecting to the data highways. [Pg.60]

As outlined in Section IV, in the conductor-like version of PCM we have a simple expression of the energy functional, Equation (1.15). It can be discretized as ... [Pg.70]

There are currently three different approaches for carrying out ASC-PCM calculations [1,3]. In the original method, called dielectric D-PCM [18], the magnitude of the point charges is determined on the basis of the dielectric constant of the solvent. The second approach is C-PCM by Cossi and Barone [24], in which the surrounding medium is modelled as a conductor instead of a dielectric. The third, IEF-PCM method (Integral Equation Formalism) by Cances et al the most recently developed [16], uses a molecular-shaped cavity to define the boundary between solute and dielectric solvent. We have to mention also the COSMO method (COnductorlike Screening MOdel), a modification of the C-PCM method by Klamt and coworkers [26-28], In the latter part of the review we will restrict our discussion to the methods that actually are used to model solute-solvent interactions in NMR spectroscopy. [Pg.131]

The molecule is often represented as a polarizable point dipole. A few attempts have been performed with finite size models, such as dielectric spheres [64], To the best of our knowledge, the first model that joined a quantum mechanical description of the molecule with a continuum description of the metal was that by Hilton and Oxtoby [72], They considered an hydrogen atom in front of a perfect conductor plate, and they calculated the static polarizability aeff to demonstrate that the effect of the image potential on aeff could not justify SERS enhancement. In recent years, PCM has been extended to systems composed of a molecule, a metal specimen and possibly a solvent or a matrix embedding the metal-molecule system in a molecularly shaped cavity [62,73-78], In particular, the molecule was treated at the Hartree-Fock, DFT or ZINDO level, while for the metal different models have been explored for SERS and luminescence calculations, metal aggregates composed of several spherical particles, characterized by the experimental frequency-dependent dielectric constant. For luminescence, the effects of the surface roughness and the nonlocal response of the metal (at the Lindhard level) for planar metal surfaces have been also explored. The calculation of static and dynamic electrostatic interactions between the molecule, the complex shaped metal body and the solvent or matrix was done by using a BEM coupled, in some versions of the model, with an IEF approach. [Pg.309]

In addition to SMx and the cluster-continuum model, other continuum models have also been used to study reactions in liquids, including the polarized continuum model [133-135] (PCM), the conductor-like screening model (COSMO [136] and COSMO-RS [137,138]), the generalized COSMO [139] (GCOSMO) model, conductorlike PCM [140] (CPCM), and isodensity PCM [141] (IPCM). [Pg.352]

Over the last years, the basic concepts embedded within the SCRF formalism have undergone some significant improvements, and there are several commonly used variants on this idea. To exemplify the different methods and how their results differ, one recent work from this group [52] considered the sensitivity of results to the particular variant chosen. Due to its dependence upon only the dipole moment of the solute, the older approach is referred to herein as the dipole variant. The dipole method is also crude in the sense that the solute is placed in a spherical cavity within the solute medium, not a very realistic shape in most cases. The polarizable continuum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately mimics the shape of the molecule, created by a series of overlapping spheres. The reaction field is represented by an apparent surface charge approach. The standard PCM approach utilizes an integral equation formulation (IEF) [56,57], A variant of this method is the conductor-polarized continuum model (CPCM) [58] wherein the apparent charges distributed on the cavity surface are such that the total electrostatic potential cancels on the surface. The self-consistent isodensity PCM procedure [59] determines the cavity self-consistently from an isodensity surface. The UAHF (United Atom model for Hartree-Fock/6-31 G ) definition [60] was used for the construction of the solute cavity. [Pg.410]

Although many satisfactory VCD studies based on the gas phase simulations have been reported, it may be necessary to account for solvent effects in order to achieve conclusive AC assignments. Currently, there are two approaches to take solvent effects into account. One of them is the implicit solvent model, which treats a solvent as a continuum dielectric environment and does not consider the explicit intermolecular interactions between chiral solute and solvent molecules. The two most used computational methods for the implicit solvent model are the polarizable continuum model (PCM) [93-95] and the conductor-like screening model (COSMO) [96, 97]. In this treatment, geometry optimizations and harmonic frequency calculations are repeated with the inclusion of PCM or COSMO for all the conformers found. Changes in the conformational structures, the relative energies of conformers, and the harmonic frequencies, as well as in the VA and VCD intensities have been reported with the inclusion of the implicit solvent model. The second approach is called the explicit solvent model, which takes the explicit intermolecular interactions into account. The applications of these two approaches, in particular the latter one will be further discussed in Sect. 4.2. [Pg.200]

The conductor-like screening model (COSMO) approach replaces the dielectric medium with a conducting medium (basically a medium that effectively has an infinite dielectric constant). Interlocking spheres are used to generate the cavity. The conductor-like screening has been implemented as a PCM version, called CPCM.128,129... [Pg.33]

Generalized Bom (GB) approach. The most common implicit models used for small molecules are the Conductor-Like Screening Model (COSMO) [77,78], the DPCM [79], the Conductor-Like Modification to the Polarized Continuum Model (CPCM) [80,81], the Integral Equation Formalism Implementation of PCM (IEF-PCM) [82] PB models, and the GB SMx models of Cramer and Truhlar [23,83-86]. The newest Minnesota solvation models are the SMD universal Solvation Model based on solute electron density [26] and the SMLVE method, which combines the surface and volume polarization for electrostatic interactions model (SVPE) [87-89] with semiempirical terms that account for local electrostatics [90]. Further details on these methods can be found in Chapter 11 of Reference [23]. [Pg.126]

Calculated using the PCM continuum solvent model with the conductor field model of electrostatic interactions (COSMO). [Pg.222]


See other pages where Conductor PCM is mentioned: [Pg.36]    [Pg.601]    [Pg.517]    [Pg.36]    [Pg.601]    [Pg.517]    [Pg.613]    [Pg.708]    [Pg.241]    [Pg.304]    [Pg.550]    [Pg.46]    [Pg.527]    [Pg.65]    [Pg.310]    [Pg.324]    [Pg.85]    [Pg.323]    [Pg.484]    [Pg.87]    [Pg.386]    [Pg.476]    [Pg.206]    [Pg.4]    [Pg.54]    [Pg.708]   


SEARCH



Conductor-like PCM

PCM

PCMs

© 2024 chempedia.info