Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IEF-PCM method

There are currently three different approaches for carrying out ASC-PCM calculations [1,3]. In the original method, called dielectric D-PCM [18], the magnitude of the point charges is determined on the basis of the dielectric constant of the solvent. The second approach is C-PCM by Cossi and Barone [24], in which the surrounding medium is modelled as a conductor instead of a dielectric. The third, IEF-PCM method (Integral Equation Formalism) by Cances et al the most recently developed [16], uses a molecular-shaped cavity to define the boundary between solute and dielectric solvent. We have to mention also the COSMO method (COnductorlike Screening MOdel), a modification of the C-PCM method by Klamt and coworkers [26-28], In the latter part of the review we will restrict our discussion to the methods that actually are used to model solute-solvent interactions in NMR spectroscopy. [Pg.131]

Ab initio calculations of solvent effects on ECD spectra are less abundant than those on OR. An ab initio study of the solvent effects on the ECD spectra were carried out by Pecul et al. [76] using the IEF-PCM method [44,45,47] at the DFT/B3LYP level using LAOs. The rotatory strengths were shown to be strongly influenced by a change of solvent, and for certain transitions in molecules such as methyloxirane, even... [Pg.214]

Another method from the same PCM family of solvation methods, namely the IEF-PCM [24] (see also the contribution by Cances), has recently been used to develop an ab initio VB solvation method [25], According to this approach, in order to incorporate solvent effect into the VB scheme, the state wavefunction is expressed in the usual terms as a linear combination of VB structures, but now these VB structures are optimized and interact with one another in the presence of a polarizing field of the solvent. The Schrodinger equation for the VB structures is then solved directly by a self-consistent procedure. [Pg.90]

A similar system to that discussed in ref. [44] (tetrazine, tetrazole and pyrrole) has been studied by Manalo et al. [47] by means of the CSGT/ASC method at the B3LYP/6-311++G(2d,2p) level. The cavity was defined by using the Pauling radius for each solute atom. In this paper the effects of geometric relaxation (indirect effects) are found to be small, and the direct influence of the intensity of the solvent reaction field on the shielding constants dominates. However, the indirect effect has been found to be important for N, A-dimethylacetamidine in IEF-PCM calculations [48],... [Pg.136]

Let us now review the group of papers discussing the relative weights of the different components in Buckingham equation (Equation (2.23)). Reaction field methods describe only long-range electrostatic interaction, the crE term (or, as in IEF-PCM, some of the (rw term [29]). In order to go beyond the continuum model some solvent molecules... [Pg.136]

Generalized Bom (GB) approach. The most common implicit models used for small molecules are the Conductor-Like Screening Model (COSMO) [77,78], the DPCM [79], the Conductor-Like Modification to the Polarized Continuum Model (CPCM) [80,81], the Integral Equation Formalism Implementation of PCM (IEF-PCM) [82] PB models, and the GB SMx models of Cramer and Truhlar [23,83-86]. The newest Minnesota solvation models are the SMD universal Solvation Model based on solute electron density [26] and the SMLVE method, which combines the surface and volume polarization for electrostatic interactions model (SVPE) [87-89] with semiempirical terms that account for local electrostatics [90]. Further details on these methods can be found in Chapter 11 of Reference [23]. [Pg.126]

This mention of a family of solvents with particular physical properties prompt us to remark that there are other solvents with special physical quantities requiring some modifications in the methodological formulation of basic PCM. We cite, among others, liquid crystals in which the electric permittivity has an intrinsic tensorial character, and ionic solutions. Both solvents are included in the IEF formulation of the continuum method [20] which is the standard PCM version. [Pg.12]

Over the last years, the basic concepts embedded within the SCRF formalism have undergone some significant improvements, and there are several commonly used variants on this idea. To exemplify the different methods and how their results differ, one recent work from this group [52] considered the sensitivity of results to the particular variant chosen. Due to its dependence upon only the dipole moment of the solute, the older approach is referred to herein as the dipole variant. The dipole method is also crude in the sense that the solute is placed in a spherical cavity within the solute medium, not a very realistic shape in most cases. The polarizable continuum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately mimics the shape of the molecule, created by a series of overlapping spheres. The reaction field is represented by an apparent surface charge approach. The standard PCM approach utilizes an integral equation formulation (IEF) [56,57], A variant of this method is the conductor-polarized continuum model (CPCM) [58] wherein the apparent charges distributed on the cavity surface are such that the total electrostatic potential cancels on the surface. The self-consistent isodensity PCM procedure [59] determines the cavity self-consistently from an isodensity surface. The UAHF (United Atom model for Hartree-Fock/6-31 G ) definition [60] was used for the construction of the solute cavity. [Pg.410]

Bearing in mind these apparently contradictory results, we chose in vacuo-type geometries as starting structures to perform our analysis, by applying the PCM-IEF method. The most significant optimized geometri-... [Pg.24]

Numerous theoretical studies on DMABN have been carried out, and many of them confirm the greater validity of the TICT model. The main body of such calculations, however, has been limited to the isolated system, while few examples including solvent effects can be quoted. " On the contrary, the phenomenon is strongly related to solvation and thus explicit considerations of solvent interactions are very important to get a more accurate understamding of the experimental evidence on the specific effects due to the presence of polar solvents. Here we summarize the results of the correlated study of DMABN both in vacuo and in solution we have published on the Journal of American Chemical Society. In this study we have used the multireference perturbation configuration interaction (Cl) method, known with the CIPSI acronym, which has been coupled to the PCM-IEF solvation continuum model. ... [Pg.65]


See other pages where IEF-PCM method is mentioned: [Pg.215]    [Pg.45]    [Pg.215]    [Pg.45]    [Pg.322]    [Pg.323]    [Pg.385]    [Pg.213]    [Pg.214]    [Pg.380]    [Pg.465]    [Pg.128]    [Pg.129]    [Pg.395]    [Pg.139]    [Pg.141]    [Pg.43]    [Pg.258]    [Pg.20]   
See also in sourсe #XX -- [ Pg.36 , Pg.42 , Pg.90 , Pg.481 , Pg.483 , Pg.487 ]

See also in sourсe #XX -- [ Pg.45 ]




SEARCH



PCM

PCM method

PCMs

© 2024 chempedia.info