Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self-consistent isodensity-polarized continuum

Over the years, many workers have addressed the problem of choice of cavity and the reaction field. Tomasi s polarized continuum model (PCM) defines the cavity as a series of interlocking spheres. The isodensity PCM (IPCM) defines the cavity as an isodensity surface of the molecule. This isodensity surface is determined iteratively. The self-consistent isodensity polarized continuum model (SQ-PCM) gives a further refinement in that it allows for a full coupling between the cavity shape and the electron density. [Pg.259]

For reactions in solution, one may implement explicit or implicit hydration schemes. In explicit hydration, water molecules are included in the system. These additional water molecules have a significant effect on the reaction coordinates of a reaction (e g., Felipe et al. 2001). Implicit hydration schemes, or dielectric continuum solvation models (see Cramer and Truhlar 1994), refer to one of several available methods. One may choose between an Onsager-type model (Wong et al. 1991), a Tomasi-type model (Miertus et al. 1981 Cances et al. 1997), a static isodensity surface polarized continuum model or a self consistent isodensity polarized continuum model (see Frisch et al. 1998). [Pg.519]

Over the last years, the basic concepts embedded within the SCRF formalism have undergone some significant improvements, and there are several commonly used variants on this idea. To exemplify the different methods and how their results differ, one recent work from this group [52] considered the sensitivity of results to the particular variant chosen. Due to its dependence upon only the dipole moment of the solute, the older approach is referred to herein as the dipole variant. The dipole method is also crude in the sense that the solute is placed in a spherical cavity within the solute medium, not a very realistic shape in most cases. The polarizable continuum method (PCM) [53,54,55] embeds the solute in a cavity that more accurately mimics the shape of the molecule, created by a series of overlapping spheres. The reaction field is represented by an apparent surface charge approach. The standard PCM approach utilizes an integral equation formulation (IEF) [56,57], A variant of this method is the conductor-polarized continuum model (CPCM) [58] wherein the apparent charges distributed on the cavity surface are such that the total electrostatic potential cancels on the surface. The self-consistent isodensity PCM procedure [59] determines the cavity self-consistently from an isodensity surface. The UAHF (United Atom model for Hartree-Fock/6-31 G ) definition [60] was used for the construction of the solute cavity. [Pg.410]

The cluster-continuum moder iUuslrated in scheme 1 was used to simulate the most common electrolytes of LIBs. The supra-molecular cluster applied to the inner ring (scheme 1) incorporates the mutual effect between salt and solvent molecules by including the first solvation shell of the salt. Due to the minor effect that the salt anion XT has on the reductive behavior of solvent molecules coordinated with Li, XT and the surrounding solvent molecules are not discussed in the current chapter. The bulk solvent effect in the second ring of scheme 1 is treated by polarized continuum models, such as PCM, conductor-like PCM (CPCM), isodensity PCM (IPCM), and self-consistent isodensity PCM (SCl-PCM), which were developed on the basis of the Onsager reaction field theory and are recognized to provide reliable results for systems without specific interactions such as hydrogen bond. [Pg.229]

Alternatively, reaction field calculations with the IPCM (isodensity surface polarized continuum model) [73,74] can be performed to model solvent effects. In this approach, an isodensity surface defined by a value of 0.0004 a.u. of the total electron density distribution is calculated at the level of theory employed. Such an isodensity surface has been found to define rather accurately the volume of a molecule [75] and, therefore, it should also define a reasonable cavity for the soluted molecule within the polarizable continuum where the cavity can iteratively be adjusted when improving wavefunction and electron density distribution during a self consistent field (SCF) calculation at the HF or DFT level. The IPCM method has also the advantage that geometry optimization of the solute molecule is easier than for the PISA model and, apart from this, electron correlation effects can be included into the IPCM calculation. For the investigation of Si compounds (either neutral or ionic) in solution both the PISA and IPCM methods have been used. [41-47]... [Pg.241]


See other pages where Self-consistent isodensity-polarized continuum is mentioned: [Pg.238]    [Pg.390]    [Pg.697]    [Pg.67]    [Pg.67]    [Pg.150]    [Pg.136]    [Pg.465]    [Pg.146]    [Pg.238]    [Pg.390]    [Pg.697]    [Pg.67]    [Pg.67]    [Pg.150]    [Pg.136]    [Pg.465]    [Pg.146]    [Pg.385]    [Pg.98]    [Pg.354]    [Pg.401]    [Pg.527]    [Pg.335]   


SEARCH



Isodensity

Polarization consistent

Polarization continuum

Self polarization

Self-consistent isodensity-polarized continuum model

© 2024 chempedia.info