Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivity stable

Due to its layered structure, graphite is the carbonaceous material most sensitive to the detrimental effects of interactions with solution species. Co-intercalation of solution species such as solvent molecules together with the Li ions may lead to exfoliation and destruction of their structure, as indeed happens in solutions of PC, y-BL, THF and other solvents [356-358], Lithiated graphite electrodes behave reversibly only in solutions in which highly passivating, stable surface layers are formed on the pristine material before any Li intercalation takes place. [Pg.376]

Potential-pH diagram for Cu showing the lines for electrochemical equilibria and the fields of immunity (stable Cu), passivity (stable oxides CujO and CuO), and corrosion (dissolution of Cu+ and Cu +). The two central dashed lines are passivation potentials Epj and Epj. (From Pourbaix, M., Atlas d Ecjutlibres Electrochimicjues, Guthiers Villars+ Cie, Paris, 1963 Pourbaix, M., Atlas of the Electrochemical Equilibria in Aqueous Solutions, Pergamon, Oxford, 1966.)... [Pg.241]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

From an electrochemical viewpoint, stable pit growtli is maintained as long as tire local environment witliin tire pit keeps tire pit under active conditions. Thus, tire effective potential at tire pit base must be less anodic tlian tire passivation potential (U ) of tire metal in tire pit electrolyte. This may require tire presence of voltage-drop (IR-drop) elements. In tliis respect the most important factor appears to be tire fonnation of a salt film at tire pit base. (The salt film fonns because tire solubility limit of e.g. FeCl2 is exceeded in tire vicinity of tire dissolving surface in tlie highly Cl -concentrated electrolyte.)... [Pg.2727]

When we say cycloheptatriene is not aromatic but cycloheptatrienyl cation is we are not comparing the stability of the two to each other Cycloheptatriene is a stable hydrocarbon but does not possess the special stability required to be called aromatic Cycloheptatrienyl cation although aromatic is still a carbocation and reasonably reac tive toward nucleophiles Its special stability does not imply a rock like passivity but rather a much greater ease of formation than expected on the basis of the Lewis struc ture drawn for it A number of observations indicate that cycloheptatrienyl cation is far more stable than most other carbocations To emphasize its aromatic nature chemists often write the structure of cycloheptatrienyl cation m the Robinson circle m a ring style... [Pg.457]

The methylphosphonates differ from the phosphodiesters and phosphorothiolates in that the methyl derivatives are uncharged and are thus less water soluble. Moreover, compared to the naturally occurring phosphodiesters, the methylphosphonates form slightly less stable duplexes with complementary DNA and RNA sequences. This effect has been ascribed to the iaevitable chiraUty problem that is, if one isomer biads less well, the overall binding is decreased. Methylphosphonates can enter cell membranes by a passive mechanism and are completely resistant to nucleases. [Pg.263]

The titanium oxide film consists of mtile or anatase (31) and is typically 250-A thick. It is insoluble, repairable, and nonporous in many chemical media and provides excellent corrosion resistance. The oxide is fully stable in aqueous environments over a range of pH, from highly oxidizing to mildly reducing. However, when this oxide film is broken, the corrosion rate is very rapid. Usually the presence of a small amount of water is sufficient to repair the damaged oxide film. In a seawater solution, this film is maintained in the passive region from ca 0.2 to 10 V versus the saturated calomel electrode (32,33). [Pg.102]

Zirconium is a highly active metal which, like aluminum, seems quite passive because of its stable, cohesive, protective oxide film which is always present in air or water. Massive zirconium does not bum in air, but oxidizes rapidly above 600°C in air. Clean zirconium plate ignites spontaneously in oxygen of ca 2 MPa (300 psi) the autoignition pressure drops as the metal thickness decreases. Zirconium powder ignites quite easily. Powder (<44 fim or—325 mesh) prepared in an inert atmosphere by the hydride—dehydride process ignites spontaneously upon contact with air unless its surface has been conditioned, ie, preoxidized by slow addition of air to the inert atmosphere. Heated zirconium is readily oxidized by carbon dioxide, sulfur dioxide, or water vapor. [Pg.427]

In the presence of oxygen and water the oxides of most metals are more thermodynamically stable than the elemental form of the metal. Therefore, with the exception of gold, the only metal which is thermodynamically stable in the presence of oxygen, there is always a thermodynamic driving force for corrosion of metals. Most metals, however, exhibit some tendency to passivate, ie, to form a protective oxide film on the surface which retards further corrosion. [Pg.275]

Use and Uimitations of Electrochemical Techniques A major caution must be noted as to the general, indiscriminate use of all electrochemical tests, especially the use of AC and EIS test techniques, for the study of corrosion systems. AC and EIS techniques are apphcable for the evaluation of very thin films or deposits that are uniform, constant, and stable—for example, thin-film protective coatings. Sometimes, researchers do not recognize the dynamic nature of some passive films, corrosion produc ts, or deposits from other sources nor do they even consider the possibility of a change in the surface conditions during the course of their experiment. As an example, it is note-... [Pg.2437]

The fundamentals of this method of protection are dealt with in Section 2.3 and illustrated in Fig. 2-15. Corrosion protection for the stable-passive state is unnecessary because the material is sufficiently corrosion resistant for free corrosion conditions. If activation occurs due to a temporary disturbance, the material immediately returns to the stable passive state. This does not apply to the metastable passive state. In this case anodic protection is necessary to impose the return to the passive state. Anodic protection is also effective in the unstable passive state of the material but it must be permanently switched on, in contrast to the metastable passive state. [Pg.474]

Anodic protection is particularly suitable for stainless steels in acids. Protection potential ranges are given in Section 2.4. Besides sulfuric acid, other media such as phosphoric acid can be considered [13,21-24]. These materials are usually stable-passive in nitric acid. On the other hand, they are not passivatable in hydrochloric acid. Titanium is also a suitable material for anodic protection due to its good passivatability. [Pg.480]

Sweating, the other powerful heat loss mechanism actively regulated by the thermoregulatory center, is most developed in humans. With about 2,6 million sweat glands distributed over the skin and neurally controlled, sweat secretion can vary from 0 to 1 I7(h m ). The other, lesser, passive evaporative process of the skin is from the diffusion of water. The primary resistance to this flow is the stratum corneum or outermost 15 pm of the skin. The diffusion resistance of the skin is high in comparison to that of clothing and the boundary layer resistance and as a result makes water loss by diffusion fairly stable at about 500 grams/day. [Pg.179]

The Cs structure and dimensions (Fig. 17.26b) were established by microwave spectroscopy which also yielded a value for the molecular dipole moment p. 1.72D. Other physical properties of this colourless gas are mp -115° (or -123°), bp -6°, A//f(g,298K) —34 10kJmol [or — 273kJmol when corrected for A//f(HF, g) ]. FCIO2 is thermally stable at room temperature in dry passivated metal containers and quartz. Thermal decomposition of the gas (first-order kinetics) only becomes measurable above 300° in quartz and above 200° in Monel metal ... [Pg.877]

Passivation According to Fig. 1.15 (top) all the Fe will be converted to Fe2 03, whilst the rust originally present will be unaffected. According to Fig. 1.15 (bottom) the rust will be unaffected, whilst the iron surface exposed to the solution through pores in the rust will be passivated by a protective film of Fe203. Water will be stable except at high potentials where it will be oxidised to O2. [Pg.67]

Although thermodynamics can predict the region of pH and potential in which solid oxides, hydroxides and other compounds are stable, it can provide no other information thus on the basis of these considerations alone a metal in the passive region should be completely converted to a solid compound by reacting with water with a consequent loss of properties. [Pg.72]

Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration. Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration.
As with all determinations of thermodynamic stability, we comihehce by defining all stable phases possible, and their standard, chemical, potentials. For inost, metals there are many such phases, including oxides, hydroxides and dissolved ions. For brevity, here, only the minimum number of phases is Considered. The siriiplest system is a metal, ilf, which can oxidise lo form a stable dissolved pro,duct, (qorrpsipn), or to form a stable oxide MO (passivation), lit aqueous environments thfbe equilibria Can thereby be... [Pg.133]

Certainly a thermodynamically stable oxide layer is more likely to generate passivity. However, the existence of the metastable passive state implies that an oxide him may (and in many cases does) still form in solutions in which the oxides are very soluble. This occurs for example, on nickel, aluminium and stainless steel, although the passive corrosion rate in some systems can be quite high. What is required for passivity is the rapid formation of the oxide him and its slow dissolution, or at least the slow dissolution of metal ions through the him. The potential must, of course be high enough for oxide formation to be thermodynamically possible. With these criteria, it is easily understood that a low passive current density requires a low conductivity of ions (but not necessarily of electrons) within the oxide. [Pg.135]


See other pages where Passivity stable is mentioned: [Pg.240]    [Pg.240]    [Pg.2730]    [Pg.472]    [Pg.234]    [Pg.432]    [Pg.472]    [Pg.323]    [Pg.331]    [Pg.2429]    [Pg.2430]    [Pg.2431]    [Pg.2431]    [Pg.2431]    [Pg.40]    [Pg.61]    [Pg.169]    [Pg.208]    [Pg.216]    [Pg.475]    [Pg.481]    [Pg.736]    [Pg.891]    [Pg.41]    [Pg.100]    [Pg.111]    [Pg.124]    [Pg.125]    [Pg.134]    [Pg.134]    [Pg.135]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]




SEARCH



© 2024 chempedia.info