Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partitioning, between phases, separation

Obviously, construction of a mathematical model of this process, with our present limited knowledge about some of the critical details of the process, requires good insight and many qualitative judgments to pose a solvable mathematical problem with some claim to realism. For example what dictates the point of phase separation does equilibrium or rate of diffusion govern the monomer partitioning between phase if it is the former what are the partition coefficients for each monomer which polymeric species go to each phase and so on. [Pg.175]

Another area of rapid growth for particle separation has been that of Field-Flow Fractionation (FFF) originally developed by Giddings (12,13>1 1 ) (see also papers in this symposium series). Like HDC, the separation in field-flow fractionation (FFF) results from the combination of force field interactions and the convected motion of the particles, rather than a partitioning between phases. In FFF the force field is applied externally while in HDC it results from internal, interactions. [Pg.2]

The problem of transport of molecules through swollen gels is of general interest. It not only pertains to catalysis, but also to the field of chromatographic separations over polymeric stationary phases, where the partition of a solute between the mobile phase (liquid phase) and a swollen polymeric stationary phase (gel phase) is a process of the utmost importance. As with all the chemical and physicochemical processes, the thermodynamic and the kinetic aspect must be distinguished also in partition between phases. [Pg.219]

Separation processes use two primary mechanisms for performing the separation partitioning between phases (equilibrium) or relative motion of various chemical species (rate). [Pg.30]

Phase equilibrium information characterizes partitioning between phases for a system and is important for describing separation processes. For equilibrium-limited processes, these values dictate the limits for separation in a single stage. For mass transfer-limited processes, the partitioning between phases is an important parameter in the analysis. The data can be presented in tabular form. But this approach is restricted in application, since an analysis typically requires phase equilibrium values that are not explicitly listed in the table. So, graphical representation and computational methods are usually more useful. [Pg.42]

In microfluidic-based systems, material is transported within microstructures (of typical dimensions of 10-500 pm) where separations, reactions, and other processes occur. Focus has been on the realization of the traditional separation techniques (electrophoresis, chromatography, isoelectric focusing, etc.) and reactions in the microchip format. The principles of separation, as in the conventional formats, are based on differences in mass and charge (thus mobility) and partitioning between phases. However, advantages associated with the small dimensions provide superior performance. For example, the higher surface to volume ratio arising from the smaller dimensions results in lower heat and mass transfer resistances and thus an improved performance. [Pg.1563]

A separation in which solutes partition between a mobile and stationary phase. [Pg.546]

Thus far all the separations we have considered involve a mobile phase and a stationary phase. Separation of a complex mixture of analytes occurs because each analyte has a different ability to partition between the two phases. An analyte whose distribution ratio favors the stationary phase is retained on the column for a longer time, thereby eluting with a longer retention time. Although the methods described in the preceding sections involve different types of stationary and mobile phases, all are forms of chromatography. [Pg.597]

Capillary Electrochromatography Another approach to separating neutral species is capillary electrochromatography (CEC). In this technique the capillary tubing is packed with 1.5-3-pm silica particles coated with a bonded, nonpolar stationary phase. Neutral species separate based on their ability to partition between the stationary phase and the buffer solution (which, due to electroosmotic flow, is the mobile phase). Separations are similar to the analogous HPLC separation, but without the need for high-pressure pumps, furthermore, efficiency in CEC is better than in HPLC, with shorter analysis times. [Pg.607]

Gas chromatography, depending on the stationary phase, can be either gas—Hquid chromatography (glc) or gas—soHd chromatography (gsc). The former is the most commonly used. Separation in a gas—Hquid chromatograph arises from differential partitioning of the sample s components between the stationary Hquid phase adsorbed on a porous soHd, and the gas phase. Separation in a gas—soHd chromatograph is the result of preferential adsorption on the soHd or exclusion of materials by size. [Pg.106]

Liquid chromatography is complementary to gas chromatography because samples that cannot be easily handled in the gas phase, such as nonvolatile compounds or thermally unstable ones, eg, many natural products, pharmaceuticals, and biomacromolecules, are separable by partitioning between a Hquid mobile phase and a stationary phase, often at ambient temperature. Developments in the technology of Ic have led to many separations, done by gc in the past, to be carried out by Hquid chromatography. [Pg.109]

The basis for the separation is that when two polymers, or a polymer and certain salts, are mixed together in water, they are incompatible, leading to the formation of two immiscible but predominantly aqueous phases, each rich in only one of the two components [Albertsson, op. cit. Kula, in Cooney and Humphrey (eds.), op. cit., pp. 451 71]. A phase diagram for a polyethylene glycol (PEG)-Dextran, two-phase system is shown in Fig. 22-85. Proteins are known to distribute unevenly between these phases. This uneven distribution can be used for the selective concentration and partial purification of the products. Partitioning between the two phases is controlled by the polymer molecular weight and concentration, protein net charge and... [Pg.2060]

Analysis of sulfonic acid species in sulfonated olefins. Kupfer and Kuenzler [108] reported the determination of acid species following partition between a 6.5% hydrochloric acid solution in 40% ethanol and a 1 1 (v/v) propan-2-ol-hexane mixture. The organic fraction contains alkenesulfonic and hydroxy-alkanesulfonic acids and the aqueous phase disulfonic acids and sulfato-sulfonates. The monosulfonic acids were converted to methyl esters and separated by column chromatography. To determine sulfatosulfonates the aqueous fraction was hydrolyzed and then partitioned and chromatographed. The separation is controlled using IR spectroscopy. [Pg.435]


See other pages where Partitioning, between phases, separation is mentioned: [Pg.211]    [Pg.102]    [Pg.1425]    [Pg.1320]    [Pg.167]    [Pg.215]    [Pg.547]    [Pg.582]    [Pg.770]    [Pg.248]    [Pg.2060]    [Pg.17]    [Pg.64]    [Pg.309]    [Pg.447]    [Pg.151]    [Pg.13]    [Pg.313]    [Pg.90]    [Pg.129]    [Pg.59]    [Pg.309]    [Pg.340]    [Pg.607]    [Pg.226]    [Pg.76]    [Pg.311]    [Pg.60]    [Pg.675]    [Pg.899]    [Pg.399]    [Pg.171]    [Pg.554]    [Pg.236]   


SEARCH



Partitioning between phases

Partitioning, between phases, separation techniques based

Phase partitioning

Separations Based on a Partitioning Between Phases

© 2024 chempedia.info