Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes palladium

The 5-oxohexanal 27 is prepared by the following three-step procedure (1) 1,2-addition of allylmagnesium bromide to an a, / -unsaturated aldehyde to give the 3-hydroxy-1,5-diene 25, (2) oxy-Cope rearrangement of 25 to give 26, and (3) palladium catalyzed oxidation to afford 27. The method was applied to the synthesis of A -2-octalone (28), which is difficult to prepare by the Robinson annulation[25]. [Pg.26]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

The most obvious way to reduce an aldehyde or a ketone to an alcohol is by hydro genation of the carbon-oxygen double bond Like the hydrogenation of alkenes the reac tion IS exothermic but exceedingly slow m the absence of a catalyst Finely divided metals such as platinum palladium nickel and ruthenium are effective catalysts for the hydrogenation of aldehydes and ketones Aldehydes yield primary alcohols... [Pg.627]

The reaction is used for the chain extension of aldoses in the synthesis of new or unusual sugars In this case the starting material l arabinose is an abundant natural product and possesses the correct configurations at its three chirality centers for elaboration to the relatively rare l enantiomers of glucose and mannose After cyanohydrin formation the cyano groups are converted to aldehyde functions by hydrogenation m aqueous solution Under these conditions —C=N is reduced to —CH=NH and hydrolyzes rapidly to —CH=0 Use of a poisoned palladium on barium sulfate catalyst prevents further reduction to the alditols... [Pg.1056]

Common catalyst compositions contain oxides or ionic forms of platinum, nickel, copper, cobalt, or palladium which are often present as mixtures of more than one metal. Metal hydrides, such as lithium aluminum hydride [16853-85-3] or sodium borohydride [16940-66-2] can also be used to reduce aldehydes. Depending on additional functionahties that may be present in the aldehyde molecule, specialized reducing reagents such as trimethoxyalurninum hydride or alkylboranes (less reactive and more selective) may be used. Other less industrially significant reduction procedures such as the Clemmensen reduction or the modified Wolff-Kishner reduction exist as well. [Pg.470]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

Aromatic Aldehydes. Carbon monoxide reacts with aromatic hydrocarbons or aryl haHdes to yield aromatic aldehydes (see Aldehydes). The reaction of equation 24 proceeds with yields of 89% when carried out at 273 K and 0.4 MPa (4 atm) using a boron trifluoride—hydrogen fluoride catalyst (72), whereas conversion of aryl haHdes to aldehydes in 84% yield by reaction with CO + H2 requires conditions of 423 K and 7 MPa (70 atm) with a homogeneous palladium catalyst (73) and also produces HCl. [Pg.53]

Reduction of Acid Chlorides to Aldehydes. Palladium catalysis of acid chlorides to produce aldehydes is known as the Rosenmund reduction and is an indirect method used in the synthesis of aldehydes from organic acids. [Pg.200]

The catalyst commonly used in this method is 5 wt % palladium supported on barium sulfate inhibited with quinoline—sulfur, thiourea, or thiophene to prevent reduction of the product aldehyde. A procedure is found in the Hterature (57). Suitable solvents are toluene, benzene, and xylene used under reflux conditions. Interestingly, it is now thought that Rosenmund s method (59) originally was successful because of the presence of sulfur compounds in the xylene used, since the need for an inhibitor to reduce catalyst activity was not described until three years later (60). [Pg.200]

This reaction is favored by moderate temperatures (100—150°C), low pressures, and acidic solvents. High activity catalysts such as 5—10 wt % palladium on activated carbon or barium sulfate, high activity Raney nickel, or copper chromite (nonpromoted or promoted with barium) can be used. Palladium catalysts are recommended for the reduction of aromatic aldehydes, such as that of benzaldehyde to toluene. [Pg.200]

The palladium chloride process for oxidizing olefins to aldehydes in aqueous solution (Wacker process) apparendy involves an intermediate anionic complex such as dichloro(ethylene)hydroxopalladate(II) or else a neutral aqua complex PdCl2 (CH2=CH2)(H2 0). The coordinated PdCl2 is reduced to Pd during the olefin oxidation and is reoxidized by the cupric—cuprous chloride couple, which in turn is reoxidized by oxygen, and the net reaction for any olefin (RCH=CH2) is then... [Pg.171]

The nickel or cobalt catalyst causes isomerization of the double bond resulting in a mixture of C-19 isomers. The palladium complex catalyst produces only the 9-(10)-carboxystearic acid. The advantage of the hydrocarboxylation over the hydroformylation reaction is it produces the carboxyUc acids in a single step and obviates the oxidation of the aldehydes produced by hydroformylation. [Pg.63]

Rosenmund reaction is the action between acid chloride and hydrogen in the presence of palladium catalyst to produce aldehydes... [Pg.256]

In related work, palladium, nickel, or methyl viologen (MV ) were used to catalyze the conversion of perfluoroalkyl iodides to a-perfluoroalkyl carbinols in the presence of zinc [43, 44] (equations 32 and 33) Only aldehydes react under these conditions... [Pg.677]

The intermediacy of dipolar species such as 186 has been demonstrated by reaction of enamines with 2-hydroxy-1-aldehydes of the aromatic series (129). The enamine (113) reacts in benzene solution at room temperature with 2-hydroxy-1-naphthaldehyde to give the crystalline adduct (188) in 91 % yield. Oxidation with chromium trioxide-pyridine of 188 gave 189 with p elimination of the morpholine moiety. Palladium on charcoal dehydrogenation of 189 gave the known 1,2-benzoxanthone (129). [Pg.157]

Further reduction of 3,4-dihydroquinazoline to l,2,3,Jt-tetTahydro-quinazoline is more difficult, but it can be accomplished with sodium amalgam or by catalytic reduction with palladium-charcoal. 1,2,3,4-Tetrahydroquinazolines have also been prepared by condensing o-aminobenzylamines with various aldehydes and with formaldehyde or methylenediamines (see 3b). [Pg.286]

As catalyst for the Rosenmund reaction palladium on a support, e.g. palladium on barium sulfate, is most often used. The palladium has to be made less active in order to avoid further reduction of the aldehyde to the corresponding alcohol. Such a poisoned catalyst is obtained for example by the addition of quinoline and sulfur. Recent reports state that the reactivity of the catalyst is determined by the morphology of the palladium surface." ... [Pg.244]

According to Skita, the reaction proceeds in a different manner if the reduction be effected with palladium chloride and hydrogen. In this case the citral in alcoholic solution is mixed with an aqueous solution of palladium chloride and the whole thickened with gum-arabic. Hydrogen gas is then forced into this solution under pressure. The products of the reduction include citronellal and citronellol and a di-molecular aldehyde, C Hj O, which probably has the following constitution —... [Pg.185]

Reduction of unsaturated carbonyl compounds to the saturated carbonyl is achieved readily and in high yield. Over palladium the reduction will come to a near halt except under vigorous conditions (73). If an aryl carbonyl compound, or a vinylogous aryl carbonyl, such as in cinnamaldehyde is employed, some reduction of the carbonyl may occur as well. Carbonyl reduction can be diminished or stopped completely by addition of small amounts of potassium acetate (i5) to palladium catalysts. Other effective inhibitors are ferrous salts, such asferroussulfate, at a level of about one atom of iron per atom of palladium. The ferrous salt can be simply added to the hydrogenation solution (94). Homogeneous catalysts are not very effective in hydrogenation of unsaturated aldehydes because of the tendencies of these catalysts to promote decarbonylation. [Pg.40]

Anhydrides are reduced with relative ease. McAlees and McCrindle 20) established the following increasing order of difficulty for various carbonyls acid chlorides > aldehydes, ketones > anhydrides > esters > carboxylic acids > amides. Reduction may proceed by 1,2-addilion of hydrogen or by cleavage of an oxygen-carbonyl bond. If 1,2-addition to the carbonyl occurs, as in the presence of strong protic acids over palladium, 1,1-diesters are formed by acylation 26). [Pg.79]

In certain sensitive compounds, such as triphenylacetyl chloride, decar-bonylation may be the major reaction (59). Palladium, the preferred catalyst for the Rosenmund reduction, is also an excellent catalyst for decarbonylation of aldehydes (27,28,65), and decarbonylation may occur after aldehyde formation. [Pg.154]

Isomerization of the double bond in allylic alcohols may result in aldehydes or ketones (I07a). The reaction can have synthetic value (8bJ3c). If isomerization is desired, palladium is probably the preferred catalyst, operated best under hydrogen-poor conditions (/47fl). Allylic ethers can be converted to alcohols by isomerization with (Ph3P)3RhCl at pH 2 to the vinyl ether, which undergoes hydrolysis (36a). [Pg.168]

Fischer s original method for conversion of the nitrile into an aldehyde involved hydrolysis to a carboxylic acid, ring closure to a cyclic ester (lactone), and subsequent reduction. A modern improvement is to reduce the nitrile over a palladium catalyst, yielding an imine intermediate that is hydrolyzed to an aldehyde. Note that the cyanohydrin is formed as a mixture of stereoisomers at the new chirality center, so two new aldoses, differing only in their stereochemistry at C2, Tesult from Kiliani-Fischer synthesis. Chain extension of D-arabinose, for example, yields a mixture of D-glucose and o-mannose. [Pg.994]


See other pages where Aldehydes palladium is mentioned: [Pg.889]    [Pg.892]    [Pg.42]    [Pg.524]    [Pg.51]    [Pg.472]    [Pg.397]    [Pg.173]    [Pg.183]    [Pg.200]    [Pg.36]    [Pg.79]    [Pg.84]    [Pg.125]    [Pg.125]    [Pg.2094]    [Pg.27]    [Pg.71]    [Pg.214]    [Pg.333]    [Pg.12]    [Pg.288]    [Pg.406]    [Pg.693]    [Pg.719]    [Pg.724]   
See also in sourсe #XX -- [ Pg.6 , Pg.99 , Pg.101 , Pg.102 , Pg.189 ]




SEARCH



Aldehydes enolate oxidations, palladium®) acetate

Aldehydes palladium catalysts

Aldehydes palladium®) acetate

Aldehydes reductive aminations, palladium®) acetate

Carbonyl compounds aldehyde oxidations, palladium acetate

Palladium aldehyde hydrogenation

Palladium-Catalyzed Decarbonylation of Acyl Halides and Aldehydes

© 2024 chempedia.info