Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium acetate catalyst oxidation

O/t/20-arylation of benzoic acids is often preferable to ortho-arylation of benzamides if conversion of the amide moiety to other functional groups is desired. However, only a few reports have dealt with the orf/io-functionalization of free benzoic acids due to challenges that involve such transformations. The reactions can be complicated by decarboxylation of the product and the starting material. Despite those difficulties, several methods for direct o/t/io-arylation of benzoic acids have been developed. Yu has shown that arylboronates are effective in arylation of benzoic acids under palladium catalysis [59], The reactions require the presence of palladium acetate catalyst, silver carbonate oxidant, and benzoquinone. Even more interestingly, the procedure is applicable to the arylation of unactivated sp3 C-H bonds in tertiary carboxylic acids such as pivalic acid (Scheme 13) if aryl iodide coupling partner is used. Aryl trifluoroborates can also be used [60],... [Pg.68]

The method is basically an application of the Wacker oxidation except that the catalyst used is palladium acetate ( Pd(AcO)2 or Pd(02CCH3)2). the solvent is acetic acid or tert-butyl alcohol and the oxygen source is the previously suggested hydrogen peroxide (H202)[17]. [Pg.75]

Olefins add anhydrous acetic acid to give esters, usually of secondary or tertiary alcohols propjiene [115-07-1] yields isopropyl acetate [108-21-4], isobutjiene [115-11-7] gives tert-huty acetate [540-88-5]. Minute amounts of water inhibit the reaction. Unsaturated esters can be prepared by a combined oxidative esterification over a platinum group metal catalyst. Eor example, ethylene-air-acetic acid passed over a palladium—Hthium acetate catalyst yields vinyl acetate. [Pg.66]

Dextrorotatory Series, Using palladium or platinic oxide as catalyst, in glacial acetic acid, with hydrogen at a pressure of 10-25 atmospheres,... [Pg.532]

The chemistry of vinyl acetate synthesis from the gas-phase oxidative coupling of acetic acid with ethylene has been shown to be facilitated by many co-catalysts. Since the inception of the ethylene-based homogeneous liquid-phase process by Moiseev et al. (1960), the active c ytic species in both the liquid and gas-phase process has always been seen to be some form of palladium acetate [Nakamura et al, 1971 Augustine and Blitz, 1993]. Many co-catalysts which help to enhance the productivity or selectivity of the catalyst have appeared in the literature over the years. The most notable promoters being gold (Au) [Sennewald et al., 1971 Bissot, 1977], cadmium acetate (Cd(OAc)j) [Hoechst, 1967], and potassium acetate (KOAc) [Sennewald et al., 1971 Bissot, 1977]. [Pg.191]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

Palladium-catalyzed oxidation of 1,4-dienes has also been reported. Thus, Brown and Davidson28 obtained the 1,3-diacetate 25 from oxidation of 1,4-cyclohexadiene by ben-zoquinone in acetic acid with palladium acetate as the catalyst (Scheme 3). Presumably the reaction proceeds via acetoxypalladation-isomerization to give a rr-allyl intermediate, which subsequently undergoes nucleophilic attack by acetate. This principle, i.e. rearrangement of a (allyl)palladium complex, has been applied in nonoxidative palladium-catalyzed reactions of 1,4-dienes by Larock and coworkers29. Akermark and coworkers have demonstrated the stereochemistry of this process by the transformation of 1,4-cyclohexadiene to the ( r-allyl)palladium complex 26 by treatment... [Pg.660]

Acetic acid analogs can also be formed from a one-step C-H activation process using a palladium sulfate catalyst.15 A free radical process was ruled out for this formal eight-electron oxidation due to the high selectivities observed (90% based on methane converted) (Equation (7)). [Pg.105]

The electrochemical Wacker-type oxidation of terminal olefins (111) by using palladium chloride or palladium acetate in the presence of a suitable oxidant leading to 2-alkanones (112) has been intensively studied. As recyclable double-mediatory systems (Scheme 43), quinone, ferric chloride, copper acetate, and triphenylamine have been used as co-oxidizing agents for regeneration of the Pd(II) catalyst [151]. The palladium-catalyzed anodic oxidation of... [Pg.513]

Trickle bed oxidation. Dilute aqueous ethanol (about 2-3%) is oxidized to acetic acid by the action of pure oxygen at 10 atm in a trickle bed reactor packed with palladium-alumina catalyst pellets and kept at 30°C. According to Sato et al., Proc. First Pacific Chem. Eng. Congress, Kyoto, p. 197,1972, the reaction proceeds as follows ... [Pg.516]

Electron-rich heterocycles can also be coupled with olefins in the presence of a suitable palladium(II) catalyst. The oxidative coupling requires the use of a stoichiometric amount of palladium however, unless a suitable oxidising agent is added to the reaction. In an early example N-sulphonylated pyrrole was reacted with 1,4-naphthoquinone in the presence of an equimolar amount of palladium acetate to give the coupled product in good yield (6.92.).124... [Pg.130]

By using an olefin embedded into the parent molecule Stoltz developed the oxidative annulation of indoles. The optimal catalyst consisted of palladium acetate and ethyl nicotinate, and molecular oxygen was used as the oxidant in the process. The reaction proceeded equally well irrespective of the attachment point of the alkyl chain bearing the pendant olefin bond on the five membered ring, and the formation of five and six membered rings were both effective (6.95.),127... [Pg.131]

The Heck reactions depicted so far all involve the coupling of halopyridines and other olefins. The alternate approach, coupling of a vinylpyridine with an aryl halide is also feasible, although less commonly employed. 4-Vinylpyridine was coupled successfully with diethyl 4-bromobenzylphosphonate (7.50.) in the presence of a highly active catalyst system consisting of palladium acetate and tn-o-tolylphosphine to give the desired product in 89% yield, which was used for grafting the pyridine moiety onto metal oxides.70... [Pg.158]

The oxidation of ds-2-hexene (II) catalyzed by palladium acetate proceeds after an induction period of 2-4 hrs shown in Figure 4. Using 0.00163M palladium acetate total inhibition of reaction was observed with 1.08 X 10 5M quinol. 2,4,6-tri (tert-Butyl) phenol (5.60 X 10 5M) only showed the reaction without total inhibition. The formation of the allylic complex IVb proceeds in a similar way to the reaction of I, and it is the major species in the catalyst solutions. The formation of unsatu-... [Pg.66]

Palladium(II) salts apparently oxidize arylamines to arylpalladium salts since alkenes are arylated by reaction with only an aromatic amine and a palladium salt. However, yields are generally low.100 Much better yields are obtained if /-butyl nitrite is added and, of course, this forms the diazonium salt in situ. This not only saves a step but some diazonium salts which are too unstable to be isolated may be used as well. The reactions are carried out in the presence of acetic or chloroacetic acid with 5-10% bis(di-benzylideneacetone)palladium as catalyst (equation 41).101... [Pg.856]

A study of the olefin oxidation catalyst system, palladium acetate-MOAc (M = Li or Na), has shown that in the absence of acetate ion, Pd acetate-acetic acid exists as the trimeric species [Pd3(OAc)6].32 Reaction with MOAc is not instantaneous, and u.v.-visible spectra indicate an initial equilibrium involving trimer - dimer (9). When M = Na conversion into dimer is complete at 0.2M-NaOAc. Further addition of... [Pg.386]

The first set of reactions is the mainstay of the petrochemical industry 1 outstanding examples are the oxidation of propene to propenal (acrolein) catalysed by bismuth molybdate, and of ethene to oxirane (ethylene oxide) catalysed by silver. In general these processes work at high but not perfect selectivity, the catalysts having been fine-tuned by inclusion of promoters to secure optimum performance. An especially important reaction is the oxidation of ethene in the presence of acetic (ethanoic) acid to form vinyl acetate (ethenyl ethanoate) catalysed by supported palladium-gold catalysts this is treated in Section 8.4. Oxidation reactions are very exothermic, and special precautions have to be taken to avoid the catalyst over-heating. [Pg.217]

The C5 aldehyde intermediate is produced from butadiene via catalytic oxidative acetoxylation followed by rhodium-catalyzed hydroformylation (see Fig. 2.30). Two variations on this theme have been described. In the Hoffmann-La-Roche process a mixture of butadiene, acetic acid and air is passed over a palladium/tellurium catalyst. The product is a mixture of cis- and frans-l,4-diacetoxy-2-butene. The latter is then subjected to hydroformylation with a conventional catalyst, RhH(CO)(Ph3P)3, that has been pretreated with sodium borohydride. When the aldehyde product is heated with a catalytic amount of p-toluenesulphonic acid, acetic acid is eliminated to form an unsaturated aldehyde. Treatment with a palladium-on-charcoal catalyst causes the double bond to isomerize, forming the desired Cs-aldehyde intermediate. [Pg.65]

When media other than water are used, related processes operate. Thus in acetic acid ethylene gives vinyl acetate, whereas vinyl ethers may be formed in alcohols. Both homogeneous and heterogeneous syntheses of vinyl acetate have been commercialized. The latter process (Hoechst) involves direct oxidation over a palladium-gold catalyst containing alkali acetate on a support ... [Pg.1287]


See other pages where Palladium acetate catalyst oxidation is mentioned: [Pg.94]    [Pg.566]    [Pg.201]    [Pg.219]    [Pg.711]    [Pg.718]    [Pg.139]    [Pg.21]    [Pg.54]    [Pg.109]    [Pg.1169]    [Pg.133]    [Pg.134]    [Pg.271]    [Pg.59]    [Pg.61]    [Pg.64]    [Pg.368]    [Pg.553]    [Pg.214]    [Pg.209]    [Pg.278]    [Pg.62]    [Pg.601]    [Pg.80]    [Pg.79]   


SEARCH



Acetalization-oxidation

Acetals catalyst

Acetals oxidation

Acetate oxidation

Acetic oxide

Oxidation palladium

Palladium acetate

Palladium acetate catalyst

Palladium acetate oxidants

Palladium catalysts catalyst

Palladium oxide

Palladium oxidized

Palladium-catalyst oxidants

© 2024 chempedia.info