Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium-catalyst oxidants

Production of acetaldehyde from oxidation of C H. In a solution of CuCU containing PdCU as a catalyst Liquid-phase esterification of terephthallc acTd lth methanol Hydrogenation of methyl llnoleate In the presence of a palladium catalyst Oxidation of sodium sulfite with cobaltous sulfate catalyst... [Pg.681]

Palladium catalysts are useful alternatives to Adams platinum oxide catalyst described in Section 111,150. The nearest equivalent to the latter is palladium chloride upon carbon and it can be stored indefinitely the palladium salt is reduced to the metal as required ... [Pg.949]

Vapor-phase oxidation over a promoted vanadium pentoxide catalyst gives a 90% yield of maleic anhydride [108-31-6] (139). Liquid-phase oxidation with a supported palladium catalyst gives 55% of succinic acid [110-15-6] (140). [Pg.108]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

UBE Industries, Ltd. has improved the basic method (32—48). In the UBE process, dialkyl oxalate is prepared by oxidative CO coupling in the presence of alkyl nitrite and a palladium catalyst. [Pg.459]

Ca.ta.lysis, The most important iadustrial use of a palladium catalyst is the Wacker process. The overall reaction, shown ia equations 7—9, iavolves oxidation of ethylene to acetaldehyde by Pd(II) followed by Cu(II)-cataly2ed reoxidation of the Pd(0) by oxygen (204). Regeneration of the catalyst can be carried out in situ or ia a separate reactor after removing acetaldehyde. The acetaldehyde must be distilled to remove chloriaated by-products. [Pg.183]

Snia Viscosa. Catalytic air oxidation of toluene gives benzoic acid (qv) in ca 90% yield. The benzoic acid is hydrogenated over a palladium catalyst to cyclohexanecarboxyhc acid [98-89-5]. This is converted directiy to cmde caprolactam by nitrosation with nitrosylsulfuric acid, which is produced by conventional absorption of NO in oleum. Normally, the reaction mass is neutralized with ammonia to form 4 kg ammonium sulfate per kilogram of caprolactam (16). In a no-sulfate version of the process, the reaction mass is diluted with water and is extracted with an alkylphenol solvent. The aqueous phase is decomposed by thermal means for recovery of sulfur dioxide, which is recycled (17). The basic process chemistry is as follows ... [Pg.430]

With hydrogen sulfide at 500—600°C, monochlorotoluenes form the corresponding thiophenol derivatives (30). In the presence of palladium catalysts and carbon monoxide, monochlorotoluenes undergo carbonylation at 150—300°C and 0.1—20 MPa (1—200 atm) to give carboxyHc acids (31). Oxidative coupling of -chlorotoluene to form 4,4 -dimethylbiphenyl can be achieved in the presence of an organonickel catalyst, generated in situ, and zinc in dipolar aprotic solvents such as dimethyl acetamide (32,33). An example is shown in equation 4. [Pg.53]

Palladium catalysts have been prepared by fusion of palladium chloride in sodium nitrate to give palladium oxide by reduction of palladium salts by alkaline formaldehyde or sodium formate, by hydrazine and by the reduction of palladium salts with hydrogen.The metal has been prepared in the form of palladium black, and in colloidal form in water containing a protective material, as well as upon supports. The supports commonly used are asbestos, barium carbonate, ... [Pg.81]

The 4-hydroxy-2-methylindole (MP 112°C to 115°C from benzene/ethyl acetate), used as starting material, may be obtained by hydrogenation of 4-banzyloxy-2-dimethylamino-methylindole (MP 117°C to 120°C from benzene) in the presence of a palladium catalyst (5% on aluminum oxide). [Pg.939]

Palladium catalyst foe partial ee DUCTION OF ACETYLENES, 46, 89 Palladium on charcoal, catalyst for reductive methylation of ethyl p-mtrophenylacetate, 47, 69 in reduction of l butyl azidoacetate to glycine J-butyl ester 4B, 47 Palladium oxide as catalyst for reduction of sodium 2 nitrobenzene sulfinate, 47, S... [Pg.135]

Phenoxy acetophenone, 46, 94 Phenylacetyleue, oxidative coupling to diphenyldiacetylene, 46, 39 partial reduction to styrene using palladium catalyst, 46, 90 reaction with sodium hypobromite to yield phenylbromoethyne, 46,86... [Pg.135]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

In the direct coupling reaction (Scheme 30), it is presumed that a coordinatively unsaturated 14-electron palladium(o) complex such as bis(triphenylphosphine)palladium(o) serves as the catalytically active species. An oxidative addition of the organic electrophile, RX, to the palladium catalyst generates a 16-electron palladium(n) complex A, which then participates in a transmetalation with the organotin reagent (see A—>B). After facile trans- cis isomerization (see B— C), a reductive elimination releases the primary organic product D and regenerates the catalytically active palladium ) complex. [Pg.592]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]


See other pages where Palladium-catalyst oxidants is mentioned: [Pg.161]    [Pg.217]    [Pg.161]    [Pg.217]    [Pg.76]    [Pg.378]    [Pg.417]    [Pg.85]    [Pg.294]    [Pg.218]    [Pg.484]    [Pg.485]    [Pg.202]    [Pg.98]    [Pg.12]    [Pg.100]    [Pg.253]    [Pg.579]    [Pg.580]    [Pg.23]    [Pg.23]    [Pg.48]    [Pg.86]    [Pg.86]    [Pg.86]    [Pg.121]    [Pg.127]    [Pg.186]    [Pg.192]    [Pg.204]    [Pg.226]    [Pg.246]    [Pg.39]    [Pg.173]    [Pg.188]    [Pg.994]   


SEARCH



Carbon monoxide oxidation palladium oxide catalyst

Catalyst palladium-zinc oxide

Catalyst palladous oxide—palladium black

Catalyst platinum/palladium partial oxidation

Catalysts, palladium monolithic oxidation

Olefin Oxidation with Palladium Catalyst

Oxidation palladium

Oxidative coupling palladium catalysts

Palladium acetate catalyst oxidation

Palladium acetate catalyst oxidative coupling with

Palladium catalyst oxidation-reduction conversion

Palladium catalysts alcohol oxidation with

Palladium catalysts carbon monoxide oxidation

Palladium catalysts catalyst

Palladium catalysts oxidative cyclization

Palladium complexes oxidation catalysts

Palladium oxide

Palladium oxide catalyst

Palladium oxide-supported metal catalysts

Palladium oxidized

Palladium-catalyst oxidants copper®) acetate

Palladium-catalyst oxidants copper®) bromide

Palladium-catalyst oxidants copper®) chloride

Phenylacetylene, oxidative coupling palladium catalyst

© 2024 chempedia.info