Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride-P elimination

The acetaldehyde-forming step (eq. 7) involves nucleophihc attack by hydroxide or water on a coordinated Pd olefin complex followed by P-hydride elimination. [Pg.183]

Hydrocarbyl Complexes. Stable homoleptic and heteroleptic uranium hydrocarbyl complexes have been synthesized. Unlike the thorium analogues, uranium alkyl complexes are generally thermally unstable due to P-hydride elimination or reductive elimination processes. A rare example of a homoleptic uranium complex is U(CH(Si(CH2)3)2)3, the first stable U(I11) homoleptic complex to have been isolated. A stmctural study indicated a triganol... [Pg.335]

The initially formed tetra-alkylferrate(II) represents the reactive intermediate in both reactions that undergoes a carboferration of the triple bond in eq. 2, Scheme 29. Transmetallation from Fe to Mg yields a vinyl-magnesium species, which liberates the desired olefin upon hydrolysis within the acidic work-up procedure. In the above two reactions, a competing p-hydride elimination from the ferrate yields the unreactive Fe-H species and hence is considered to be the deactivation step in the catalytic cycle. [Pg.53]

The proposed catalytic cycle is shown in Scheme 31. Hence, FeCl2 is reduced by magnesium and subsequently coordinates both to the 1,3-diene and a-olefin (I III). The oxidative coupling of the coordinated 1,3-diene and a-olefin yields the allyl alkyl iron(II) complex IV. Subsequently, the 7i-a rearrangement takes place (IV V). The syn-p-hydride elimination (Hz) gives the hydride complex VI from which the C-Hz bond in the 1,4-addition product is formed via reductive elimination with regeneration of the active species II to complete the catalytic cycle. Deuteration experiments support this mechanistic scenario (Scheme 32). [Pg.53]

As a mechanistic hypothesis, the authors assumed a reduction of the Fe(+2) by magnesium and subsequent coordination of the substrates, followed by oxidative coupling to form alkyl allyl complex 112a. A ti—c rearrangement, followed by a syn p-hydride elimination and reductive elimination, yields the linear product 114 with the 1,2-disubstituted ( )-double bond (Scheme 29). This hypothesis has been supported by deuterium labeling experiments, whereas the influence of the ligand on the regioselectivity still remains unclear. [Pg.205]

Transfer hydrogenation of aldehydes with isopropanol without addition of external base has been achieved using the electronically and coordinatively unsaturated Os complex 43 as catalyst. High turnover frequencies have been observed with aldehyde substrates, however the catalyst was very poor for the hydrogenation of ketones. The stoichiometric conversion of 43 to the spectroscopically identifiable in solution ketone complex 45, via the non-isolable complex 44 (Scheme 2.4), provides evidence for two steps of the operating mechanism (alkoxide exchange, p-hydride elimination to form ketone hydride complex) of the transfer hydrogenation reaction [43]. [Pg.31]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

The next step involves the generation of the new aUcene by P-hydride elimination, throngh an agostic interaction, and evolution to a hydride-paUadium complex. The calculated potential surfaces for the overall insertion-elimination process are quite flat and globally exothermic [11,15], Finally, the reductive elimination of the hydride-Pd(ll) complex, which is favoured by steric factors related to the buUdness of the iV-substituents on the carbene [13], provides the active species that can enter into a new catalytic cycle. [Pg.162]

Both Ni and Pd reactions are proposed to proceed via the general catalytic pathway shown in Scheme 8.1. Following the oxidative addition of a carbon-halogen bond to a coordinatively unsaturated zero valent metal centre (invariably formed in situ), displacement of the halide ligand by alkoxide and subsequent P-hydride elimination affords a Ni(II)/Pd(ll) aryl-hydride complex, which reductively eliminates the dehalogenated product and regenerates M(0)(NHC). ... [Pg.208]

Silyl(pinacol)borane (88) also adds to terminal alkenes in the presence of a coordinate unsaturated platinum complex (Scheme 1-31) [132]. The reaction selectively provides 1,2-adducts (97) for vinylarenes, but aliphatic alkenes are accompanied by some 1,1-adducts (98). The formation of two products can be rationalized by the mechanism proceeding through the insertion of alkene into the B-Pt bond giving 99 or 100. The reductive elimination of 97 occurs very smoothly, but a fast P-hydride elimination from the secondary alkyl-platinum species (100) leads to isomerization to the terminal carbon. [Pg.29]

P-H oxidative addition followed by alkyne insertion into a Pd-P bond gives the re-gio-isomeric alkenyl hydrides 15 and 16. Protonolysis with diaUcyl phosphite regenerates hydride 17 and gives alkenylphosphonate products 18 and 19. Insertion of alkene 18 into the Pd-H bond of 17 followed by reductive eUmination gives the bis-products, but alkene 19 does not react, presumably for steric reasons. P-Hydride elimination from 16 was invoked to explain formation of trace product 20. [Pg.155]

This new impurity proved to be derived from the Pd-catalyzed oxidation of DIPA to the enamine via P-hydride elimination. In fact, mixing Pd(OAc)2 with DIPA in DMF-d7 readily formed Pd black along with two species, primary amine and acetone, presumably derived from the enamine through hydrolysis. The resulting enamine or acetone then underwent a coupling reaction with iodoaniline 28. Heterocyclization through the arylpalladium(II) species provided 2-methyl indole 71, as shown in Scheme 4.19. [Pg.134]

A catalyst used for the u-regioselective hydroformylation of internal olefins has to combine a set of properties, which include high olefin isomerization activity, see reaction b in Scheme 1 outlined for 4-octene. Thus the olefin migratory insertion step into the rhodium hydride bond must be highly reversible, a feature which is undesired in the hydroformylation of 1-alkenes. Additionally, p-hydride elimination should be favoured over migratory insertion of carbon monoxide of the secondary alkyl rhodium, otherwise Ao-aldehydes are formed (reactions a, c). Then, the fast regioselective terminal hydroformylation of the 1-olefin present in a low equilibrium concentration only, will lead to enhanced formation of n-aldehyde (reaction d) as result of a dynamic kinetic control. [Pg.460]

At the present, it is difficult to predict a distinct rhodium catalyst showing the appropriate properties. Furthermore, the reaction conditions applied will influence the outcome of the reaction also. Low carbon monoxide pressure favours p-hydride elimination by enhanced CO dissociation which allows for the formation of vacant sites at the metal... [Pg.460]

An additional prerequisite in this reaction, however, is inhibition of a premature P-hydrogen elimination. Reaction of 6/4-56 and 6/4-57 led to 6/4-58 with 41 % yield. Again, one can assume that first a Ni-complex 6/4-59 is formed, which gives the bicyclic 6/4-60 followed by formation of the triquinane skeleton 6/4-58 via 6/4-61 with a P-hydride elimination being the last step (Scheme 6/4.15). [Pg.467]

A complex such as Ta(CHCMe3)(PMe3)2Cl3 reacts readily with ethylene, propylene, or styrene to give all of the possible products (up to four) which can be formed by rearrangement of Intermediate metallacyclobutane complexes (two for substituted olefins) by a p-hydride elimination process (e.g., equation 2) ( ). We saw... [Pg.355]

The branched polymers produced by the Ni(II) and Pd(II) a-diimine catalysts shown in Fig. 3 set them apart from the common early transition metal systems. The Pd catalysts, for example, are able to afford hyperbranched polymer from a feedstock of pure ethylene, a monomer which, on its own, offers no predisposition toward branch formation. Polymer branches result from metal migration along the chain due to the facile nature of late metals to perform [3-hydride elimination and reinsertion reactions. This process is similar to the early mechanism proposed by Fink briefly mentioned above [18], and is discussed in more detail below. The chain walking mechanism obviously has dramatic effects on the microstructure, or topology, of the polymer. Since P-hydride elimination is less favored in the Ni(II) catalysts compared to the Pd(II) catalysts, the former system affords polymer with a low to moderate density of short-chain branches, mostly methyl groups. [Pg.186]

One of the most defining characteristics of the late metal a-diimine polymerization systems is the uniquely branched polyolefins that they afford. This arises from facile p-hydride elimination that late transition metal alkyl complexes undergo. The characteristics of the isomerization process have been the subject of much investigation, particularly with the more easily studied Pd(II) a-diimine system. The process is initiated by P-hydride elimination from the unsaturated alkyl agostic complex 1.17, followed by hydride reinsertion into olefin hydride intermediate 1.18 in a non-regioselective manner (Scheme 5). In doing so, the metal center may migrate... [Pg.190]

Syntheses of isolable organometallic species by carbometallations of alkenes are difficult because many side reactions can occur, namely p-hydride elimination and chain propagation. As a consequence, only a few examples have been reported to date, mainly concerning reactions in which the initial carboalumination product is trapped through fast intra-... [Pg.306]

Improved yields of cyclopropylamines 47 could be obtained by using methyltitanium triisopropoxide (53) instead of titanium tetraisopropoxide [108], as well as by adding the Grignard reagent to the mixture of the amide and the titanium reagent at ambient rather than low temperature (Schemes 11.15 and 11.16, and Table 11.9) [67,69]. In principle, methyltitanium triisopropoxide requires only one equivalent of the alkylmagnesium halide to generate a dialkyltitanium diisopropoxide intermediate 55, and in this particular case P-hydride elimination can only occur at the non-methyl substituent so that methane... [Pg.407]

This special feature arises from the combination of the transition metal behavior such as the coordination of a carbon-carbon multiple bond, oxidative addition, reductive elimination, P-hydride elimination, addition reactions and the behavior of classical c-carbanion towards electrophiles. [Pg.530]

The Pd-catalyzed amination of / -rm-butylphenyl bromide with pyrrole in the presence of Pd(OAc)2, dppf and one equivalent of NaOr-Bu led to the Af-arylation product 88. A simplified version of the mechanism commences with the oxidative addition of p-te/t-butylphenyl bromide to Pd(0), giving rise to the palladium complex 89. Ligand exchange with pyrrole followed by deprotonation by the base (NaOr-Bu) results in amido complex 90. Reductive elimination of 90 then gives the amination product 88 with concomitant regeneration of Pd(0) catalyst. If the amine had a (3-hydride in amido complex 90, a (3-hydride elimination would be a competing pathway, although reductive elimination is faster than P-hydride elimination in most cases. [Pg.22]

In this proposed process, p-hydride elimination first yields a putative hydride olefin rc-complex. Rotation of the -coordinated olefin moiety about its co-ordination axis, followed by reinsertion produces a secondary carbon unit and therefore a branching point. Consecutive repetitions of this process allows the metal center to migrate down the polymer chain, thus producing longer chain branches. Chain termination occurs via monomer assisted p-hydrogen elimination, either in a fully concerted fashion as illustrated in Figure 2b or in a multistep associative mechanism as implicated by Johnson1 et al. [Pg.59]


See other pages where Hydride-P elimination is mentioned: [Pg.572]    [Pg.580]    [Pg.793]    [Pg.797]    [Pg.857]    [Pg.147]    [Pg.201]    [Pg.15]    [Pg.16]    [Pg.241]    [Pg.11]    [Pg.14]    [Pg.15]    [Pg.171]    [Pg.384]    [Pg.236]    [Pg.357]    [Pg.75]    [Pg.191]    [Pg.303]    [Pg.6]    [Pg.219]    [Pg.359]    [Pg.381]    [Pg.75]    [Pg.880]    [Pg.172]   
See also in sourсe #XX -- [ Pg.15 , Pg.357 , Pg.359 , Pg.380 , Pg.381 , Pg.390 ]

See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.351 , Pg.352 ]

See also in sourсe #XX -- [ Pg.2 , Pg.7 , Pg.15 , Pg.16 , Pg.18 , Pg.22 , Pg.23 , Pg.26 , Pg.28 , Pg.231 ]

See also in sourсe #XX -- [ Pg.212 ]

See also in sourсe #XX -- [ Pg.121 , Pg.122 ]

See also in sourсe #XX -- [ Pg.33 , Pg.45 , Pg.68 ]

See also in sourсe #XX -- [ Pg.94 ]

See also in sourсe #XX -- [ Pg.45 ]

See also in sourсe #XX -- [ Pg.583 , Pg.610 ]

See also in sourсe #XX -- [ Pg.373 , Pg.482 ]

See also in sourсe #XX -- [ Pg.415 , Pg.531 ]

See also in sourсe #XX -- [ Pg.323 , Pg.327 , Pg.328 , Pg.371 , Pg.402 ]

See also in sourсe #XX -- [ Pg.5 , Pg.9 , Pg.11 , Pg.19 , Pg.21 , Pg.58 ]

See also in sourсe #XX -- [ Pg.16 , Pg.56 , Pg.161 , Pg.193 , Pg.202 ]

See also in sourсe #XX -- [ Pg.727 ]

See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.270 , Pg.384 , Pg.424 ]

See also in sourсe #XX -- [ Pg.242 , Pg.350 , Pg.385 ]

See also in sourсe #XX -- [ Pg.26 , Pg.45 , Pg.46 , Pg.57 ]

See also in sourсe #XX -- [ Pg.373 , Pg.482 ]

See also in sourсe #XX -- [ Pg.204 , Pg.211 ]

See also in sourсe #XX -- [ Pg.201 ]




SEARCH



3-Hydride elimination

P-elimination

P-hydride elimination from

P-hydride elimination reactions

© 2024 chempedia.info