Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative hardening

B.K. Mazumdar, J.M. Sanyal, B.N. Bose and A. Lahiri, Mechanism and kinetics of oxidative hardening of char-tar briquettes, Indian J. Technol., 7 (1969) 212—218. [Pg.51]

Previous investigators have drawn attention to the beneficial effect of lime when added in small quantities to asphaltic bitumen. The lime helps retard oxidative hardening (13) and reduces the tendency towards water-stripping (4,11,12). Most asphalts are slightly acidic because of the presence of phenolic or carboxylic substituents and would therefore react with basic oxides to form insoluble salts. For example, Fromm (10) has described the use of iron salts of naphthenic acids as adhesion promoters to improve the water resistance of asphalt concretes. This promising approach is now undergoing commercial trials. The literature also describes methods of chemically modifying asphalt with maleic anhydride or acrylic acid (14), sulfur trioxide (15), sulfur dioxide (16), acetyl sulfate (17-21), and sulfuric acid (20). (For a recent review of the interfacial phenomena in asphaltic compositions see Ref. 4.)... [Pg.178]

The rate of chemical reactions normally decreases with decreasing temperature. Therefore, two-component paints and oxidative hardening paints require an application temperature above a certain minimum. The steel temperature is more important than the air temperature. Temperature limits often used are epoxy paints ... [Pg.295]

C, polyurethane 0 C, oxidative hardening paints 0°C. If it is strictly necessary to paint in cold weather, physically drying paints (i.e. those drying by evaporation of the solvent) should preferably be used, since these dry relatively fast also at low temperatures. [Pg.296]

If the binder pitch softens, the briquettes may be deformed, or glued together as a result of the exuding of binder from the briquette surface. Such difficulties are avoided by an oxidative hardening pretreatment or by maintaining the briquettes in a quiescent state during the temperature interval used for binder softening. [Pg.537]

Diminished sensitivity of the film overlay was observed with aged X-ray film in both undeveloped and developed form. Presumably air oxidation hardens the gelatin, reducing susceptibility to proteolytic degradation. No apparent change in quality over at least 2 months was observed with freshly developed film kept in a closed box in the dark. [Pg.270]

ENR possesses fewer double bonds than NR and therefore would be expected to be more resistant to oxidation. However, the oven air ageing of a conventionally cured ENR vulcanizate (S, 2-5 sul-phenamide accelerator, 0 5 phr) was found to be poor. A rapid hardening occurred on air ageing. This oxidative hardening is not an intrinsic property of ENR since when peroxide and efficient vulcanizing systems (S, 0 3 sulphenamide, 2 4 TMTD, 1 6 phr) were used their ageing characteristics were observed to be similar to those of the corresponding NR vulcanizates (Fig. 16). [Pg.109]

At the anode, a chemical oxidation reaction is bound to take place. In normal fixers, sulfite (SOj ) is oxidized and acid (H ) is released as a consequence of this oxidation. Due to the decrease of the sulfite concentration and the decrease in the pH, the fixing solution becomes unstable and sulfur precipitation starts to occur when the pH of the fixer decreases below 4.0. In the case of hardening fixers, there is also an upper limit to the pH, since aluminum-hydroxides starts to precipitate when the pH exceeds 5.0. [Pg.606]

Method 1. From ammonium chloroplatinate. Place 3 0 g. of ammonium chloroplatinate and 30 g. of A.R. sodium nitrate (1) in Pyrex beaker or porcelain casserole and heat gently at first until the rapid evolution of gas slackens, and then more strongly until a temperature of about 300° is reached. This operation occupies about 15 minutes, and there is no spattering. Maintain the fluid mass at 500-530° for 30 minutes, and allow the mixture to cool. Treat the sohd mass with 50 ml. of water. The brown precipitate of platinum oxide (PtOj.HjO) settles to the bottom. Wash it once or twice by decantation, filter througha hardened filter paper on a Gooch crucible, and wash on the filter until practically free from nitrates. Stop the washing process immediately the precipitate tends to become colloidal (2) traces of sodium nitrate do not affect the efficiency of the catalyst. Dry the oxide in a desiccator, and weigh out portions of the dried material as required. [Pg.470]

Ruthenium is a hard, white metal and has four crystal modifications. It does not tarnish at room temperatures, but oxidizes explosively. It is attacked by halogens, hydroxides, etc. Ruthenium can be plated by electrodeposition or by thermal decomposition methods. The metal is one of the most effective hardeners for platinum and palladium, and is alloyed with these metals to make electrical contacts for severe wear resistance. A ruthenium-molybdenum alloy is said to be... [Pg.108]

Steels iu the AISI 400 series contain a minimum of 11.5% chromium and usually not more than 2.5% of any other aHoyiag element these steels are either hardenable (martensitic) or nonhardenable, depending principally on chromium content. Whereas these steels resist oxidation up to temperatures as high as 1150°C, they are not particularly strong above 700°C. Steels iu the AISI 300 series contain a minimum of 16% chromium and 6% nickel the relative amounts of these elements are balanced to give an austenitic stmcture. These steels caimot be strengthened by heat treatment, but can be strain-hardened by cold work. [Pg.118]

High temperature fatigue and fretting fatigue behavior has also been improved by implantation (113,114). This has been achieved by using species that inhibit oxidation or harden the surface. It is generally accepted that fretting behavior is closely coimected to oxidation resistance, perhaps due to third party effects of oxidation products. Oxidation resistance alone has also been improved by ion implantation (118—120). [Pg.398]

Lead—tin (1.8—2.5 wt %) is used both as a cable sheathing ahoy (BS 801 ahoy A and DIN 17640) and as a battery connector ahoy ia sealed lead—calcium—tin batteries (15). Tia is generahy added to lead—arsenic cable ahoys ia smah amounts. The arsenic ahoys have excehent creep resistance and mechanical properties, but are unstable and lose arsenic readily by oxidation. The addition of smah amounts of tin (0.10—0.20 wt %) eliminates arsenic loss. Lead ahoys having 0.4 wt % tin and 0.15 % cadmium, which are used for cable sheathing, do not age harden, show excehent corrosion and creep resistance, and are very ductile. [Pg.62]

Other alloys have been developed for use in particular corrosive environments at high temperatures. Several of these are age-hardenable alloys which contain additions of aluminum and titanium. Eor example, INCONEL alloys 718 and X-750 [11145-80-5] (UNS N07750) have higher strength and better creep and stress mpture properties than alloy 600 and maintain the same good corrosion and oxidation resistance. AHoy 718 exhibits excellent stress mpture properties up to 705°C as well as good oxidation resistance up to 980°C and is widely used in gas turbines and other aerospace appHcations, and for pumps, nuclear reactor parts, and tooling. [Pg.7]

The cobalt deposition rate on new, replacement, or decontaminated recirculation piping surface has been reduced by pretreating the piping using an atmosphere of oxygenated wet steam to form an oxide film (25). Studies have been conducted for both PWRs and BWRs to reduce the cobalt content of materials used in the nuclear parts of the plants, particularly in hardened and wear surfaces where cobalt-base alloys ( 50% Co) are used (26). Some low cobalt materials have been developed however, the use of the materials is limited to replacement parts or new plants. [Pg.196]

Whereas semigloss paints can use only one extender, dat paints, especially interior, can use combinations of three or more. Gloss paints typically do not use extenders, which decrease gloss. As a result, gloss paints lack the hardening effect of extenders and must rely on harder binders for adequate durabihty. Other types of extenders used in paints can have functional properties such as corrosion resistance, mildew resistance, and film-hardening effects. Thek functional properties result from thek reactive nature in the paint film. Zinc oxide is an example of a functional extender that contributes to these properties in a paint film. [Pg.541]

Vehicles. The soHd pigments are dispersed iato the ink vehicle, which consists of a combination of resia, oil, and solvent. The solvent is absorbed by the paper, leaving a partially dry ink film of resia and oil that biads the pigment to the paper. This film then hardens by oxidation. Oxidation of the vehicle is aided by varnish driers, ie, metallic salts. Cobalt driers are considered the most effective (see Driers and metallic soaps). [Pg.55]

Sulfur. Low sulfur stocks and EV sulfur-accelerated systems have better aging resistance. Normally, the oxidation rate increases with the amount of sulfur used in the cure. The increased rate may be due to activation of adjacent C—H groups by high levels of combined sulfur. Saturated sulfides are more inert to oxidation than aHyUc sulfides. Polysulfidic cross-links impart excessive hardening of SBR as compared to more stable monosulfidic cross-links. [Pg.246]

For binder preparation, dilute hydrochloric or acetic acids are preferred, because these faciUtate formation of stable silanol condensation products. When more complete condensation or gelation is preferred, a wider range of catalysts, including moderately basic ones, is employed. These materials, which are often called hardeners or accelerators, include aqueous ammonia, ammonium carbonate, triethanolamine, calcium hydroxide, magnesium oxide, dicyclohexylamine, alcohoHc ammonium acetate, and tributyltin oxide (11,12). [Pg.38]

Sodium chlorite oxidation of com and rice starches is recommended for the production of textile sizes (101) and oxidized starch is recommended as a hardening agent in the immobilization of microbial cells within gelatin (102). [Pg.344]


See other pages where Oxidative hardening is mentioned: [Pg.109]    [Pg.23]    [Pg.109]    [Pg.109]    [Pg.109]    [Pg.23]    [Pg.109]    [Pg.109]    [Pg.42]    [Pg.87]    [Pg.131]    [Pg.193]    [Pg.222]    [Pg.40]    [Pg.337]    [Pg.362]    [Pg.114]    [Pg.122]    [Pg.123]    [Pg.250]    [Pg.55]    [Pg.234]    [Pg.392]    [Pg.7]    [Pg.13]    [Pg.14]    [Pg.476]    [Pg.531]    [Pg.456]    [Pg.457]    [Pg.358]    [Pg.17]    [Pg.216]    [Pg.302]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Harden

Hardened

Hardener

Hardeners

Hardening

Hardening lead oxide

Hardening zinc oxide

© 2024 chempedia.info