Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition metal catalysts

Many laboratory and even some industrial scale oxidations were historically conducted using stoichiometric, toxic, metal-based oxidants such as KMn04, K2Cr207 and 0s04 [2], However, the use of small-molecule sources of oxygen is preferable from both economic and environmental viewpoints. These oxidants include 02, H202 and NaOCl, with an additional metal catalyst if required. [Pg.181]

In another series of experiments (59), toluene solutions of 1-(1,2-C B,oHu)P(CH ) were reacted with deuterium gas in the presence of (Ph3P)3RuHCl. Mass spectral evidence proved that up to eight deuterium atoms had been introduced into the phosphine. Since only four BH exchange sites could possibly be involved in deuterium exchange which proceeded only through ortho-metalation intermediates, an intermolecular, reversible oxidative addition of catalyst to terminal B—H bonds was indicated. Indeed, further work proved that under the same conditions 1,2-, 1,7-, and 1,12-C2BioHi2 carboranes could be totally deuterated at boron... [Pg.181]

Keywords 8-Acylquinoline 8-Quinolinyl ketone All-carbon quaternary centers Bond insertion Carboacylation Carbon-carbon bond activation Chelation Cyclometalation Directed metalation Directing group Metallacycle Oxidative addition Rhodium catalyst... [Pg.85]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Ca.ta.lysis, Iridium compounds do not have industrial appHcations as catalysts. However, these compounds have been studied to model fundamental catalytic steps (174), such as substrate binding of unsaturated molecules and dioxygen oxidative addition of hydrogen, alkyl haHdes, and the carbon—hydrogen bond reductive elimination and important metal-centered transformations such as carbonylation, -elimination, CO reduction, and... [Pg.181]

Use of alcohol as a solvent for carbonylation with reduced Pd catalysts gives vinyl esters. A variety of acrylamides can be made through oxidative addition of carbon monoxide [630-08-0] CO, and various amines to vinyl chloride in the presence of phosphine complexes of Pd or other precious metals as catalyst (14). [Pg.414]

Catalyst Selectivity. Selectivity is the property of a catalyst that determines what fraction of a reactant will be converted to a particular product under specified conditions. A catalyst designer must find ways to obtain optimum selectivity from any particular catalyst. For example, in the oxidation of ethylene to ethylene oxide over metallic silver supported on alumina, ethylene is converted both to ethylene oxide and to carbon dioxide and water. In addition, some of the ethylene oxide formed is lost to complete oxidation to carbon dioxide and water. The selectivity to ethylene oxide in this example is defined as the molar fraction of the ethylene converted to ethylene oxide as opposed to carbon dioxide. [Pg.193]

Paint Driers and Polymer Additives. Paints based on alkyd resins (qv) dry by the oxidation and cross-linking of unsaturated side chains. Metal catalysts are included in paint formulations to promote this drying. Cerium carboxylates, eg, the naphthenate, are used as through driers, ie, to promote drying in the body of the paint film rather than at the film s surface (44). [Pg.371]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

Two possible reasons may be noted by which just the coordinatively insufficient ions of the low oxidation state are necessary to provide the catalytic activity in olefin polymerization. First, the formation of the transition metal-carbon bond in the case of one-component catalysts seems to be realized through the oxidative addition of olefin to the transition metal ion that should possess the ability for a concurrent increase of degree of oxidation and coordination number (177). Second, a strong enough interaction of the monomer with the propagation center resulting in monomer activation is possible by 7r-back-donation of electrons into the antibonding orbitals of olefin that may take place only with the participation of low-valency ions of the transition metal in the formation of intermediate 71-complexes. [Pg.203]

The general mechanism of coupling reactions of aryl-alkenyl halides with organometallic reagents and nucleophiles is shown in Fig. 9.4. It contains (a) oxidative addition of aryl-alkenyl halides to zero-valent transition metal catalysts such as Pd(0), (b) transmetallation of organometallic reagents to transition metal complexes, and (c) reductive elimination of coupled product with the regeneration of the zero-valent transition metal catalyst. [Pg.483]


See other pages where Oxidative addition metal catalysts is mentioned: [Pg.51]    [Pg.138]    [Pg.77]    [Pg.294]    [Pg.43]    [Pg.685]    [Pg.51]    [Pg.148]    [Pg.162]    [Pg.205]    [Pg.242]    [Pg.180]    [Pg.76]    [Pg.526]    [Pg.392]    [Pg.61]    [Pg.164]    [Pg.165]    [Pg.44]    [Pg.57]    [Pg.1134]    [Pg.267]    [Pg.706]    [Pg.529]    [Pg.229]    [Pg.203]    [Pg.174]    [Pg.32]    [Pg.91]    [Pg.135]    [Pg.241]    [Pg.212]    [Pg.216]    [Pg.285]    [Pg.66]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Catalyst additives

Catalysts metal oxidation

Metal additives

Metal oxide catalysts

Metal oxides, catalysts oxidation

Metals addition

© 2024 chempedia.info