Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation volatile organic compounds

Human-made sources cover a wide spectrum of chemical and physical activities and are the major contributors to urban air pollution. Air pollutants in the United States pour out from over 10 million vehicles, the refuse of over 250 million people, the generation of billions of kilowatts of electricity, and the production of innumerable products demanded by eveiyday living. Hundreds of millions of tons of air pollutants are generated annu ly in the United States alone. The five main classes of pollutants are particulates, sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. Total emissions in the United States are summarized by source categoiy for the year 1993 in Table 25-10. [Pg.2172]

Source category Particulate (PM-10) Sulfur dioxide Nitrogen oxides Volatile organic compounds Carbon monoxide... [Pg.2173]

CADRE A process for removing and oxidizing volatile organic compounds from gas streams. The compounds are adsorbed on a fixed bed of carbon and then desorbed by a stream of hot air or inert gas. Developed by Vard International, a division of Calgon Carbon Corporation. [Pg.47]

SWITGTHERM A catalytic process for oxidizing volatile organic compounds (VOCs). It involves regenerative heat exchange, which permits autothermal operation at VOC concentrations in the range 250 to 650 ppm. Developed in Poland and now used in over 100 installations there. [Pg.262]

The Biocube aerobic biofilter is an ex situ off-gas filtration system that is commercially available. The technology utilizes microbes to biologically oxidize volatile organic compounds (VOCs) and complex odors. It can be used in conjunction with vapor-vacuum-extraction (VVE), a process that draws gases from subsurface soil. These gases often require further treatment before being released into the atmosphere. Biocube has been field tested and has been implemented at over 100 sites for the treatment of hydrocarbon vapors. The technology has also been successfully used for odor control at a variety of sites. In addition, the Biocube system can treat odor and VOC emissions simultaneously. The units are modular, so additional stacks can be added as needed for increased flow and/or removal rates. [Pg.352]

Air pollution occurs when the concentration of natural and/or man-made substances in the atmosphere becomes excessive and the air becomes toxic. Emissions from transportation, industry, and agriculture are man-made sources of air pollution. Primary pollutants are gases, liquids, and particulates dispersed into the atmosphere through either man-made or natural processes. In the United States, the primary pollutants are carbon monoxide, sulfur dioxide, nitrogen oxides, volatile organic compounds (VOCs), and particulate matter (soot, dust, etc.). Secondary pollutants are derived from primary pollutants that undergo a chemical reaction and become a different type of toxic material. In the United States, secondary pollutants are ozone, photochemical smog, and acid rain. [Pg.267]

Almost half the world s population, and up to 90% of rural households in developing countries, still use solid fuels such as coal, firewood, wood chips, crop residue, and dung cakes for their domestic energy needs (Bruce et al. 2000). Indoor combustion of coal or biomass fuels produces both gases and particulate matter that can affect the development and exacerbation of asthma. The best understood of these substances are particulate matter, carbon monoxide, sulfur oxides, nitrous oxides, volatile organic compounds (e.g., formaldehyde), and polycyclic organic matter such as benzo[a]pyrene. [Pg.39]

Particulate matter Persistent organic pollutants Photochemical oxidation Volatile organic compounds Waste Waste heat... [Pg.257]

Galloway MM, Huisman AJ, YeeLD, Chan AWH, LozaCL, Seinfeld JH,KeutschEN (2011) Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO(x) conditions. Atmos Chem Phys 11(21) 10779-10790... [Pg.144]

Catalytic Oxidation Volatile Organic Compounds Chlorinated Hydrocarbons... [Pg.119]

Oxidation of cumene to cumene hydroperoxide is usually achieved in three to four oxidizers in series, where the fractional conversion is about the same for each reactor. Fresh cumene and recycled cumene are fed to the first reactor. Air is bubbled in at the bottom of the reactor and leaves at the top of each reactor. The oxidizers are operated at low to moderate pressure. Due to the exothermic nature of the oxidation reaction, heat is generated and must be removed by external cooling. A portion of cumene reacts to form dimethylbenzyl alcohol and acetophenone. Methanol is formed in the acetophenone reaction and is further oxidized to formaldehyde and formic acid. A small amount of water is also formed by the various reactions. The selectivity of the oxidation reaction is a function of oxidation conditions temperature, conversion level, residence time, and oxygen partial pressure. Typical commercial yield of cumene hydroperoxide is about 95 mol % in the oxidizers. The reaction effluent is stripped off unreacted cumene which is then recycled as feedstock. Spent air from the oxidizers is treated to recover 99.99% of the cumene and other volatile organic compounds. [Pg.288]

In 1990, a test using scrap tires (2x2 in. I DE) to generate steam for electricity was conducted at the Elexsys plant. The I DE replaced 20% of the plant s coal. Results showed that IDE is an environmentally sound fuel. Particulate emissions were reduced by the lower ash content of IDE, volatile organic compounds (VOC) were reduced because of more efficient burning of I DE compared to coal, and carbon dioxide emissions were reduced because I DE contains half the fixed carbon found in coal. Nitrogen oxide, chlorine emissions, and metals were also reduced, and ferrous metals and dioxins were nondetectable (7). [Pg.13]

Within 6 months after enactment of the Qean Air Act Amendments of 1990, and at least every 3 years thereafter, the Administrator shall review and, if necessary, revise, the methods ( emission factors ) used for purposes of this Act to estimate the quantity of emissions of carbon monoxide, volatile organic compounds, and oxides of nitrogen from sources of such air pollutants (including area sources and mobile sources). In addition, the Administrator shall permit any person to demonstrate improved emissions estimating techniques, and following approval of such techniques, the Administrator shall authorise the use of such techniques. Any such technique may be approved only after appropriate public participation. Until the Administrator has completed the revision required by this section, nothing in this section shall be construed to affect the validity of emission factors established by the Administrator before the date of the enactment of the Clean Air Act Amendments of 1990. [Pg.405]

The UK Environment Agency deals with over 6000 oil pollution incidents each year. One estimate suggests tliat tlie cheiTtical industry contributes to 50% of all ah pollution witli proportions approximating to sulphur dioxide (36%), carbon dioxide (28%), nitrogen oxides (18%), carbon monoxide (14%) and black smoke (10%). Motor spirit refining is responsible for ca 26% of emissions of volatile organic compounds to the atmosphere. In 1996 there were over 20 000 reports of water pollution incidents with 155 successful prosecutions. [Pg.3]

Emissions to the atmosphere from ammonia plants include sulfur dioxide (SOj), nitrogen oxides (NOJ, carbon monoxide (CO), carbon dioxide (COj), hydrogen sulfide (HjS), volatile organic compounds (VOCs), particulate matter, methane, hydrogen cyanide, and ammonia. The two primary sources of pollutants, with typical reported values, in kilograms per ton (kg/t) for the important pollutants, are as follows ... [Pg.65]

Volatile organic compounds (VOCs) include organic compounds with appreciable vapor pressure. They make up a major class of air pollutants.I his class includes not only pure hydrocarbons but also partially oxidized hydrocarbons (organic acids, aldehydes, ketones), as well as organics containing chlorine, sulfur, nitrogen, or other atoms in the molecule. [Pg.1297]


See other pages where Oxidation volatile organic compounds is mentioned: [Pg.46]    [Pg.397]    [Pg.418]    [Pg.209]    [Pg.59]    [Pg.46]    [Pg.397]    [Pg.418]    [Pg.209]    [Pg.59]    [Pg.196]    [Pg.370]    [Pg.476]    [Pg.527]    [Pg.512]    [Pg.173]    [Pg.262]    [Pg.500]    [Pg.500]    [Pg.505]    [Pg.2156]    [Pg.2197]    [Pg.12]    [Pg.29]    [Pg.74]    [Pg.140]    [Pg.332]    [Pg.512]    [Pg.544]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



Organic compounds, oxidation

Organic oxidant

Organic oxidation

Oxide volatilization

VOLATILE ORGANIC

Volatile compounds

Volatile organic compounds

Volatile organic compounds volatility

Volatile oxides

Volatility organics

Volatility, organic compounds

Volatilization organic compounds

© 2024 chempedia.info