Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation unsaturated alcohols with alkyl

C ( propyl) N phenylmtrone to N phenylmaleimide, 46, 96 semicarbazide hydrochloride to ami noacetone hydiochlonde, 46,1 tetraphenylcyclopentadienone to diphenyl acetylene, 46, 44 Alcohols, synthesis of equatorial, 47, 19 Aldehydes, aromatic, synthesis of, 47, 1 /3-chloro a,0 unsaturated, from ke tones and dimethylformamide-phosphorus oxy chloride, 46, 20 from alky 1 halides, 47, 97 from oxidation of alcohols with dimethyl sulfoxide, dicyclohexyl carbodumide, and pyndimum tnfluoroacetate, 47, 27 Alkylation, of 2 carbomethoxycyclo pentanone with benzyl chloride 45,7... [Pg.120]

These mesoporous mixed titania-silica oxides are hydrophilic materials and are excellent catalysts for epoxidations of olefins, allylic alcohols and a,jff-unsaturated ketones with alkyl hydroperoxides in non-aqueous media [37]. Their performance can be improved even further by adding organic or inorganic bases to neutralize acid sites present on the surface [38,39], The latter cause side-reactions, especially with acid sensitive epoxides. Amine addition was particularly effective and led to the development of a mesoporous Ti-Si mixed oxide containing surface-tethered tertiary amino groups as an active, selective, and recyclable catalyst for the epoxidation of allylic alcohols [38]. [Pg.478]

The kinetics of formation and hydrolysis of /-C H OCl have been investigated (262). The chemistry of alkyl hypochlorites, /-C H OCl in particular, has been extensively explored (247). /-Butyl hypochlorite reacts with a variety of olefins via a photoinduced radical chain process to give good yields of aUyflc chlorides (263). Steroid alcohols can be oxidized and chlorinated with /-C H OCl to give good yields of ketosteroids and chlorosteroids (264) (see Steroids). /-Butyl hypochlorite is a more satisfactory reagent than HOCl for /V-chlorination of amines (265). Sulfides are oxidized in excellent yields to sulfoxides without concomitant formation of sulfones (266). 2-Amino-1, 4-quinones are rapidly chlorinated at room temperature chlorination occurs specifically at the position adjacent to the amino group (267). Anhydropenicillin is converted almost quantitatively to its 6-methoxy derivative by /-C H OCl in methanol (268). Reaction of unsaturated hydroperoxides with /-C H OCl provides monocyclic and bicycHc chloroalkyl 1,2-dioxolanes. [Pg.475]

Heteropoly acids can be synergistically combined with phase-transfer catalysis in the so-called Ishii-Venturello chemistry for oxidation reactions such as oxidation of alcohols, allyl alcohols, alkenes, alkynes, P-unsaturated acids, vic-diols, phenol, and amines with hydrogen peroxide (Mizuno et al., 1994). Recent examples include the epoxidations of alkyl undecylenates (Yadav and Satoskar, 1997) and. styrene (Yadav and Pujari, 2000). [Pg.138]

As an anionic surfactant, a synthetic alkylate-base sulfonate containing about 60 % active material (Synacto 476) was used. To make it compatible with the injection water considered (composition in Table I) containing 1500 ppm Ca++ and Mg++ ions, a nonionic cosurfactant was combined with it, i.e. an unsaturated ethoxylated fatty alcohol with 8 ethylene oxide groups (Genapol). Their main characteristics and properties are listed in Table II. [Pg.276]

A possible mechanism for the P-alkylation of secondary alcohols with primary alcohols catalyzed by a 1/base system is illustrated in Scheme 5.28. The first step of the reaction involves oxidation of the primary and secondary alcohols to aldehydes and ketones, accompanied by the transitory generation of a hydrido iridium species. A base-mediated cross-aldol condensation then occurs to give an a,P-unsaturated ketone. Finally, successive transfer hydrogenation of the C=C and C=0 double bonds of the a,P-unsaturated ketone by the hydrido iridium species occurs to give the product. [Pg.131]

Hydrogenation of aromatic nitro compounds to aromatic amines Hydrogenation of aldehydes and ketortes to alcohols Hydrogenation of atomic olehnic groups Hydrogenation of unsaturatcd nitriles to unsaturated amines Hydrogenation of diolefins artd alkynes to monoolehns Hydration of ethylene oxide alkylation of aromatics with olehns oxidation of alcohols to aldehydes Oxidation of ethylene to ethylene oxide Synthesis of HCN from NH, and CH4 Oxidation of CH3OH to HCHO... [Pg.62]

The reactions occurring at the sea surface and in the euphotic zone, photo-oxidation, oxidation processes and association of some hydrocarbons with orgemic complexes such as humic or fulvic acids (Khsm and Schnitzer, 1972 Gagosian and Stuermer, 1977), tend to reduce the concentration of more labile compounds, especially the unsaturated hydrocarbons. Oxidation processes lead to the formation of alcohols, acids, alkyl and arylethers, carbonyl compounds and sulfoxides (Kawahara, 1969 Hansen, 1977). [Pg.354]

In numerous synthetic studies it has been demonstrated that DMP can be used for a selective oxidation of alcohols containing sensitive functional groups, such as unsaturated alcohols [297,1215-1218], carbohydrates and polyhydroxy derivatives [1216, 1219-1221], silyl ethers [1222,1223], amines and amides [1224-1227], various nucleoside derivatives [1228-1231], selenides [1232], tellurides [1233], phosphine oxides [1234], homoallylic and homopropargylic alcohols [1235], fluoroalcohols [1236-1239] and boronate esters [1240]. Several representative examples of these oxidations are shown below in Schemes 3.349-3.354. Specifically, the functionalized allylic alcohols 870, the Baylis-Hillman adducts of aryl aldehydes and alkyl acrylates, are efficiently oxidized with DMP to the corresponding a-methylene-p-keto esters 871 (Scheme 3.349) [1217]. The attempted Swern oxidation of the same adducts 870 resulted in substitution of the allylic hydroxyl group by chloride. [Pg.297]

The efficiency of oxidation of open-chain alkyl, cycloalkyl, and unsaturated alcohols in acetonitrile by 9-phenylxanthylium ion (PhXn+) was dependent on the alcohol stmc-tures. Structure-reactivity relationship was discussed with relation to formation of a carbocationic transition state (C +-OH). Kinetic isotope effects determined at a-D, p-D3, and OD positions for the reaction of 1-phenylethanol suggested a hydride-proton sequential transfer mechanism that involved a rate-limiting formation of the a-hydroxy carbocation intermediate. Unhindered secondary alkyl alcohols were selectively oxidized in the presence of primary and hindered secondary alkyl alcohols. Strained C(7)-C(ll) cycloalkyl alcohols reacted faster than cyclohexyl alcohol, whereas the strained C(5) and C(12) alcohols reacted slower. Aromatic alcohols were oxidized efficiently and selectively in the presence of aliphatic alcohols of comparable steric requirements. ... [Pg.150]

Olefination of the Aldehyde 178 using a stabilized Wittig reagent followed by protecting group chemistry at the lower branch and reduction of the a,p-unsaturated ester afforded the allylic alcohol 179 (Scheme 29). The allylic alcohol 179 was then converted into an allylic chloride and the hydroxyl function at the lower branch was deprotected and subsequently oxidized to provide the corresponding aldehyde 161 [42]. The aldehyde 161 was treated with trimethylsilyl cyanide to afford the cyanohydrin that was transformed into the cyano acetal 180. The decisive intramolecular alkylation was realized by treatment of the cyano acetal 180 with sodium bis(trimethylsi-lyl)amide. Subsequent treatment of the alkylated cyano acetal 182 with acid (to 183) and base afforded the bicyclo[9.3.0]tetradecane 184. [Pg.109]


See other pages where Oxidation unsaturated alcohols with alkyl is mentioned: [Pg.68]    [Pg.64]    [Pg.126]    [Pg.31]    [Pg.75]    [Pg.140]    [Pg.10]    [Pg.84]    [Pg.165]    [Pg.379]    [Pg.182]    [Pg.82]    [Pg.1079]    [Pg.1599]    [Pg.293]    [Pg.459]    [Pg.165]    [Pg.828]    [Pg.430]    [Pg.116]    [Pg.1305]    [Pg.2202]    [Pg.53]    [Pg.435]    [Pg.552]    [Pg.339]    [Pg.91]    [Pg.317]    [Pg.127]    [Pg.112]    [Pg.166]    [Pg.47]    [Pg.1014]    [Pg.167]    [Pg.7]    [Pg.570]    [Pg.468]    [Pg.291]   


SEARCH



Alcohols alkylated

Alcohols alkylation

Alcohols unsaturated

Alcohols, oxidation with

Alcohols, unsaturated oxidation

Alkyl alcohols

Alkyl oxides

Alkyl unsaturated

Alkyl with alcoholates

Alkylation with alcohol

Alkylations, with alcohols

Unsaturated oxidation

© 2024 chempedia.info