Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation Sharpless-Katsuki asymmetric epoxidation

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

The Sharpless-Katsuki asymmetric epoxidation (AE) procedure for the enantiose-lective formation of epoxides from allylic alcohols is a milestone in asymmetric catalysis [9]. This classical asymmetric transformation uses TBHP as the terminal oxidant, and the reaction has been widely used in various synthetic applications. There are several excellent reviews covering the scope and utility of the AE reaction... [Pg.188]

The past thirty years have witnessed great advances in the selective synthesis of epoxides, and numerous regio-, chemo-, enantio-, and diastereoselective methods have been developed. Discovered in 1980, the Katsuki-Sharpless catalytic asymmetric epoxidation of allylic alcohols, in which a catalyst for the first time demonstrated both high selectivity and substrate promiscuity, was the first practical entry into the world of chiral 2,3-epoxy alcohols [10, 11]. Asymmetric catalysis of the epoxidation of unfunctionalized olefins through the use of Jacobsen s chiral [(sale-i i) Mi iln] [12] or Shi s chiral ketones [13] as oxidants is also well established. Catalytic asymmetric epoxidations have been comprehensively reviewed [14, 15]. [Pg.447]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The asymmetric epoxidation of an allylic alcohol 1 to yield a 2,3-epoxy alcohol 2 with high enantiomeric excess, has been developed by Sharpless and Katsuki. This enantioselective reaction is carried out in the presence of tetraisopropoxyti-tanium and an enantiomerically pure dialkyl tartrate—e.g. (-1-)- or (-)-diethyl tartrate (DET)—using tcrt-butyl hydroperoxide as the oxidizing agent. [Pg.254]

An important breakthrough in asymmetric epoxidation has been the Katsuki-Sharpless invention [1], The reaction uses a chiral Ti(IV) catalyst, t-butylhydroperoxide as the oxidant and it works only for allylic alcohols as the substrate. In the first report titanium is applied in a stoichiometric amount. The chirality is introduced in the catalyst by reacting titanium tetra-isopropoxide... [Pg.301]

In 1980, Katsuki and Sharpless described the first really efficient asymmetric epoxidation of allylic alcohols with very high enantioselectivities (ee 90-95%), employing a combination of Ti(OPr-/)4-diethyl tartrate (DET) as chiral catalyst and TBHP as oxidant Stoichiometric conditions were originally described for this system, however the addition of molecular sieves (which trap water traces) to the reaction allows the epoxidation to proceed under catalytic conditions. The stereochemical course of the reaction may be predicted by the empirical rule shown in equations 40 and 41. With (—)-DET, the oxidant approaches the allylic alcohol from the top side of the plane, whereas the bottom side is open for the (-l-)-DET based reagent, giving rise to the opposite optically active epoxide. Various aspects of this reaction including the mechanism, theoretical investigations and synthetic applications of the epoxy alcohol products have been reviewed and details may be found in the specific literature . [Pg.1092]

In the same year (1990) that Jacobsen reported his asymmetric epoxidation, a group led by Tsutomu Katsuki at the University of Kyushu in Japan reported a closely related asymmetric epoxidation. The chiral catalyst is also a salen and the metal manganese. The oxidant is iodosobenzene (Phl=0) but this method works best for E-alkenes. It is no coincidence that Katsuki and Jacobsen both worked for Sharpless. It is not unusual for similar discoveries to be made independently in different parts of the world, the Katsuki manganese salen complex... [Pg.1489]

Permanganate oxidation of 1,5-dienes to prepare f r-2,5-disubstituted tetrahydrofurans is a well-known procedure (Equation 80). The introduction of asymmetric oxidation methodology has revived interest in this area. Sharpless-Katsuki epoxidation has found widespread application in the catalytic enantioselective synthesis of optically active tetrahydrofurans and the desymmetrization of w ro-tetrahydrofurans <2001COR663>. A general stereoselective route for the synthesis of f-tetrahydrofurans from 1,5-dienes has been developed which uses catalytic amounts of osmium tetroxide and trimethyl amine oxide as a stoichiometric oxidant in the presence of camphorsulfonic acid <2003AGE948>. [Pg.531]

Both chemical and enzymatic synthetic methods for the asymmetric oxidation of the carbon-carbon double bond have been developed [46], but the area of carbon-carbon double bond oxidations has been shaped by the breakthrough discovery of asymmetric epoxidation of allylic alcohols with the Katsuki-Sharpless method [47]. Catalytic asymmetric synthesis of epoxides from alkenes by Jacobsen... [Pg.321]

The most famous asymmetric oxidation catalyst, Sharpless-Katsuki complex [Ti(0-iPr)4, t-BuOOH and ester of tartaric acid], used for the asymmetric epoxidation of allylic alcohols can also oxidize prochiral and racemic cyclobutanones 7.25 and 7.27 to enan-tiomerically enriched lactones 7.26 and 7.28, respectively. [Pg.287]

The Katsuki-Sharpless asymmetric epoxidation of ( )-allylic alcohols is the key-step in the total synthesis of all tetroses and hexoses developed by Sharpless and Masamune [259,260] and that are summarized in O Scheme 57 for the L-series. The epoxide obtained by oxidation of... [Pg.898]

Related reactions Jacobsen-Katsuki epoxidation, Prilezhaev oxidation, Rubottom oxidation, Sharpless asymmetric epoxidation, Shi... [Pg.572]

Related reactions Davis oxaziridine oxidation, Jacobsen-Katsuki epoxidation, Priiezhaev reaction. Sharpless asymmetric epoxidation ... [Pg.676]

The Katsuki-Sharpless asymmetric epoxidation is one of the first predictably enantioselective oxidations. For reviews see (a) Katsuki, T. Martin, V. Org. React. 1996, 48, 1-299. (b) Pfenniger, D. S. Synthesis 1986, 89-116. [Pg.96]

The first of Sharpless s reactions is an oxidation of alkenes by asymmetric epoxidation. You met vanadium as a transition-metal catalyst for epoxidation with t-butyl hydroperoxide in Chapter 32, and this new reaction makes use of titanium, as titanium tetraisopropoxide, Ti(0/-Pr)4, to do the same thing. Sharpless and his co-worker Tsutomu Katsuki surmised that by adding a chiral ligand to the titanium catalyst they might be able to make the reaction asymmetric. The ligand that works best is diethyl tartrate, and one example of the reaction is shown below. [Pg.1120]


See other pages where Oxidation Sharpless-Katsuki asymmetric epoxidation is mentioned: [Pg.23]    [Pg.700]    [Pg.39]    [Pg.700]    [Pg.434]    [Pg.260]    [Pg.231]    [Pg.292]    [Pg.800]    [Pg.277]    [Pg.261]    [Pg.51]    [Pg.669]    [Pg.195]    [Pg.519]    [Pg.132]    [Pg.700]    [Pg.700]    [Pg.657]    [Pg.342]    [Pg.261]    [Pg.49]    [Pg.256]    [Pg.107]   


SEARCH



Asymmetric epoxidation

Asymmetric oxidation

Epoxidation oxidant

Epoxidations Katsuki-Sharpless

Epoxidations, asymmetric

Epoxide Sharpless

Epoxide oxidation

Epoxides asymmetric epoxidation

Epoxides oxidation

Epoxides, Sharpless

Katsuki-Sharpless epoxidation

Katsuki-Sharpless oxidation

Oxidation sharpless asymmetric

Sharpless

Sharpless asymmetric

Sharpless asymmetric epoxidations

Sharpless epoxidation

Sharpless epoxidation oxidations

Sharpless epoxidations

Sharpless oxidation

Sharpless-Katsuki asymmetric epoxidation

© 2024 chempedia.info