Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpless—Katsuki complex

The most famous asymmetric oxidation catalyst, Sharpless-Katsuki complex [Ti(0-iPr)4, t-BuOOH and ester of tartaric acid], used for the asymmetric epoxidation of allylic alcohols can also oxidize prochiral and racemic cyclobutanones 7.25 and 7.27 to enan-tiomerically enriched lactones 7.26 and 7.28, respectively. [Pg.287]

A number of stereospecific non-enzyme catalysts have been developed that convert achiral substrates into chiral products. These catalysts are usually either complex organic (Figure 10.8(a)) or organometallic compounds (Figure 10.8(b)). The organometallic catalysts are usually optically active complexes whose structures usually contain one or more chiral ligands. An exception is the Sharpless-Katsuki epoxidation, which uses a mixture of an achiral titanium complex and an enantiomer of diethyl tartrate (Figure 10.8(c)). [Pg.210]

Equation 12.16 is an example of the Sharpless-Katsuki asymmetric epoxi-dation of allylic alcohols, which is catalyzed by a Ti complex bound to a chiral tartrate ligand.38 A Mn-salen39 complex serves as catalyst for asymmetric epoxi-dation (Jacobsen-Katsuki reaction) of a wide variety of unfunctionalized alkenes, shown in equation 12.17.40 0s04 complexed with chiral alkaloids, such as quinine derivatives (equation 12.18), catalyzes asymmetric 1,2-dihydroxylation of alkenes (known as the Sharpless asymmetric dihydroxylation).41 The key step of all these transformations is the transfer of metal-bound oxygen, either as a single atom or as a pair, to one face of the alkene. [Pg.546]

Diaminocyclohexane [(R,R)- and ( S, S)-enantiomer] forms an imine (SCHIFF base) with 2,5-di-/ rr-butylsalicylaldehyde, which gives a chiral Mn(III) (salen) complex with Mn(II)acetate and oxygen. In contrast to the Sharpless-Katsuki protocol (p 20), this complex effects the stereoselective oxygen transfer (from oxidants, e.g. monopersulfate or NMO) to unfunctionalized alkenes (Jacobsen epoxidation [1], extended by Katsuki [2]) giving rise to enantiomeric oxiranes with 90-98% ee. [Pg.496]

Because of this catalyst degradation, organometallic catalysts are currently the best synthetic reagents for enantioselective epoxidation of olefins. Chiral Mn(III)-salen complexes yield up to 99% ee for cw-disubstituted, tri- and tetra-substituted alkenes [62], but the best results require less desirable oxidants - iodosyl benzene or hypochlorite. Other catalysts accept a more limited substrate range the Sharpless-Katsuki titanium-tartrate ester [65] for allylic alcohols and the JuUa-Colonna epoxidation for a,P-unsaturated ketones [66]. [Pg.58]

While Table 4 describes the situation in 2001 and many additional processes have been reported. The following analysis is still valid. A look at the processes listed in Table 4 shows that hydrogenation of C=C and C=0 is by far the most predominant transformation applied for industrial processes, followed by epoxidation and dihydroxylation reactions. On the one hand, this is due to the broad scope of cataljrtic hydrogenation and on the other hand it could be attributed to the early success of Knowles with the L-dopa process, because for many years, most academic and industrial research was focused on this transformation. The success with epoxidation and dihydroxylation can essentially be attributed to the efforts of Sharpless, Katsuki, and Jacobsen. If one analyzes the structures of the starting materials, it is quite obvious that many of these compounds are often complex and multifunctional, that is, the successful catalytic systems are not only enantioselective but tolerate many functional groups. [Pg.315]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

The requirement for the presence of an adjacent alcohol group can be regarded as quite a severe limitation to the substrate range undergoing asymmetric epoxidation using the Katsuki-Sharpless method. To overcome this limitation new chiral metal complexes have been discovered which catalyse the epoxidation of nonfunctionalized alkenes. The work of Katsuki and Jacobsen in this area has been extremely important. Their development of chiral manganese (Ill)-salen complexes for asymmetric epoxidation of unfunctionalized olefins has been reviewed1881. [Pg.23]

Although the Sharpless catalyst was extremely useful and efficient for allylic alcohols, the results with ordinary alkenes were very poor. Therefore the search for catalysts that would be enantioselective for non-alcoholic substrates continued. In 1990, the groups of Jacobsen and Katsuki reported on the enantioselective epoxidation of simple alkenes both using catalysts based on chiral manganese salen complexes [8,9], Since then the use of chiral salen complexes has been explored in a large number of reactions, which all utilise the Lewis acid character or the capacity of oxene, nitrene, or carbene transfer of the salen complexes (for a review see [10]). [Pg.305]

Indeed, several interesting procedures based on three families of active catalysts organometallic complexes, phase-transfer compounds and titanium silicalite (TS-1), and peroxides have been settled and used also in industrial processes in the last decades of the 20th century. The most impressive breakthrough in this field was achieved by Katsuki and Sharpless, who obtained the enantioselective oxidation of prochiral allylic alcohols with alkyl hydroperoxides catalyzed by titanium tetra-alkoxides in the presence of chiral nonracemic tartrates. In fact Sharpless was awarded the Nobel Prize in 2001. [Pg.1055]

Katsuki and Sharpless reported the new process of asymmetric epoxidation8 using a complex of titanium tetraisopropoxide and diethyl tartrate (DET), and t-butyl hydroperoxide (equation 18). [Pg.1234]

Catalytic, asymmetric epoxidations are one of the most important asymmetric processes. In 1980 Katsuki and Sharpless reported a stoichiometric asymmetric epoxidation of allylic alcohols, a method that was later improved to become a catalytic process.9 Moreover, catalytic asymmetric epoxidations of unfunctionalized olefins using salen-manganese complexes have been reported independently by several groups.10-12 In striking contrast to these successful achievements, an efficient catalytic asymmetric epoxidation of enones with broad generality has not been developed.13-22... [Pg.208]

In the same year (1990) that Jacobsen reported his asymmetric epoxidation, a group led by Tsutomu Katsuki at the University of Kyushu in Japan reported a closely related asymmetric epoxidation. The chiral catalyst is also a salen and the metal manganese. The oxidant is iodosobenzene (Phl=0) but this method works best for E-alkenes. It is no coincidence that Katsuki and Jacobsen both worked for Sharpless. It is not unusual for similar discoveries to be made independently in different parts of the world, the Katsuki manganese salen complex... [Pg.1489]

Before leaving the area of oxene chemistry, there is one further system worthy of mention the manganese Schiff-base complexes. The Schiff-base complexes were prepared in response to the Katsuki-Sharpless system for stereospecific epoxidation (Figure 2.19).57 The Katsuki-Sharpless system consists of titanium(IV) isopropoxide and ( + )- or (—)-diethyl tartrate with... [Pg.49]

Key Words Ethylene oxide, Propylene oxide. Epoxybutene, Market, Isoamylene oxide. Cyclohexene oxide. Styrene oxide, Norbornene oxide. Epichlorohydrin, Epoxy resins, Carbamazepine, Terpenes, Limonene, a-Pinene, Fatty acid epoxides, Allyl epoxides, Sharpless epoxidation. Turnover frequency, Space time yield. Hydrogen peroxide, Polyoxometallates, Phase-transfer reagents, Methyltrioxorhenium (MTO), Fluorinated acetone, Alkylmetaborate esters. Alumina, Iminium salts, Porphyrins, Jacobsen-Katsuki oxidation, Salen, Peroxoacetic acid, P450 BM-3, Escherichia coli, lodosylbenzene, Oxometallacycle, DFT, Lewis acid mechanism, Metalladioxolane, Mimoun complex, Sheldon complex, Michaelis-Menten, Schiff bases. Redox mechanism. Oxygen-rebound mechanism, Spiro structure. 2008 Elsevier B.V. [Pg.4]

In 1980, a highly enantioselective epoxidation of allylic alcohols was first reported by Katsuki and Sharpless [ 14]. This successful result was obtained by the use of a titanium-tartrate complex as the catalyst which has led by the following con-... [Pg.594]

Katsuki-Sharpless asymmetric epoxidation. Since its introduction in 1980 [10], the Katsuki-Sharpless asymmetric epoxidation (AE) reaction of allylic alcohols has been one of the most popular methods in asymmetric synthesis ([11-14]). In this work, the metal-catalyzed epoxidation of allylic alcohols described in the previous section was rendered asymmetric by switching from vanadium catalysts to titanium ones and by the addition of various tartrate esters as chiral ligands. Although subject to some technical improvements (most notably the addition of molecular sieves, which allowed the use of catalytic amounts of the titanium-tartrate complex), this recipe has persisted to this writing. [Pg.328]

Whilst the Sharpless epoxidation with titanium catalysts and the Jacobsen-Katsuki epoxidation with manganese(salen) complexes are at the forefront of enantioselec-tive epoxidation with metal catalysts, there are alternative systems available. Ruthenium pyridinebisoxazoline (PYBOX) complexes have been independently reported, using either phenyliodinium diacetate or sodium periodate as... [Pg.95]

Imido and 0x0 compounds are intermediates in many of the transfers of oxygen atoms and nitrene units to olefins to form epoxides and aziridines, and they are intermediates in many of the insertions of oxygen atoms and nitrene units into the C-H bonds of hydrocarbons to form alcohols and amine derivatives. The enantioselective epoxidation of allylic alcohols (Scheme 13.22) " is the most widely used epoxida-tion process, and the discovery and development of this process was one of the sets of chemistry that led K. Barry Sharpless to receive the Nobel Prize in Chemistry in 2001. The mechanism of this process is not well established, despite the long time since its discovery and development. Nevertheless, most people accept that transfer of the oxygen atom occurs from a titanium-peroxo complex - rather than from an 0x0 complex. Jacobsen s and Katsuki s - manganese-salen catalysts for the enantioselective epoxidations of unfunctionalized olefins, which were based on Kochi s achiral chromium- and manganese-salen complexes, are a second set of... [Pg.518]


See other pages where Sharpless—Katsuki complex is mentioned: [Pg.287]    [Pg.287]    [Pg.287]    [Pg.287]    [Pg.1285]    [Pg.39]    [Pg.23]    [Pg.295]    [Pg.260]    [Pg.33]    [Pg.231]    [Pg.292]    [Pg.403]    [Pg.261]    [Pg.51]    [Pg.358]    [Pg.195]    [Pg.408]    [Pg.132]    [Pg.403]    [Pg.244]    [Pg.112]    [Pg.342]    [Pg.344]    [Pg.143]    [Pg.261]    [Pg.358]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 ]




SEARCH



Katsuki complexes

Sharpless

© 2024 chempedia.info