Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpless asymmetric oxidation

Related reactions Jacobsen-Katsuki epoxidation, Prilezhaev oxidation, Rubottom oxidation, Sharpless asymmetric epoxidation, Shi... [Pg.572]

SAE reaction see Sharpless asymmetric epoxidation Saegusa oxidation 390 samarium diiodide 496, 633, 638 saponification 49, 207 sativene 382 f. [Pg.796]

The second synthesis of crystalline 43 was reported by Mori as summarized in Scheme 62 [93]. The building block (4.R,5S)-A was prepared by an enzymatic process, while another building block C was synthesized via Sharpless asymmetric epoxidation. Coupling of A with C gave D, which was cyclized under Op-polzer s conditions to give crystalline E. When E was oxidized with Dess-Martin periodinane or tetra(n-propyl)ammonium perruthenate or Jones chromic acid, crystalline 43 was obtained. Swern oxidation or oxidation with 2,2,6,6-tetramethylpiperidin-1 -oxyl of E afforded only oily materials. Accordingly, oxidation of E to 43 must be executed extremely carefully. A synthesis of oily 43 was reported by Gil [94]. [Pg.44]

Omura devised an efficient asymmetric synthesis of the 3a-hydroxyfuroindoline ring system required for the total synthesis of madindoline A (172) and B <00JA2122>. Thus, Sharpless asymmetric oxidation of tryptophol (170) led to the desired product 171 in 99% ee in a fashion consistent with the Sharpless epoxidation mnemonic <80JA5976>. [Pg.125]

Scheme 7-15 shows the significant improvement in overall stereoselectivity, due mainly to the adoption of the newly developed Sharpless asymmetric ep-oxidation. Compounds a-epoxy-67 and //-epoxy-67 can be readily obtained from 53 via the Sharpless reaction. Isomers of compounds 57 are then constructed via regioselective ring opening with a copper reagent. [Pg.408]

It is now clear that asymmetric catalytic hydrogenation is rather successful. However, the initial research work of Sharpless [5] in the asymmetric epoxidation, followed by the results of Jacobsen et al. [6] opened large opportunities for liquid-phase asymmetric oxidation. Sharpless epoxidation has been widely applied in bench-scale organic synthesis, and more recently, salene derivatives emerged among the most effective catalysts in this reaction [7,8],... [Pg.494]

Further variations on the epoxyketone intermediate theme have been reported. In the first (Scheme 9A) [78], limonene oxide was prepared by Sharpless asymmetric epoxidation of commercial (S)-(-)- perillyl alcohol 65 followed by conversion of the alcohol 66 to the crystalline mesylate, recrystallization to remove stereoisomeric impurities, and reduction with LiAlH4 to give (-)-limonene oxide 59. This was converted to the key epoxyketone 60 by phase transfer catalyzed permanganate oxidation. Control of the trisubstituted alkene stereochemistry was achieved by reaction of the ketone with the anion from (4-methyl-3-pentenyl)diphenylphosphine oxide, yielding the isolable erythro adduct 67, and the trisubstituted E-alkene 52a from spontaneous elimination by the threo adduct. Treatment of the erythro adduct with NaH in DMF resulted... [Pg.66]

Reactions have been carried out adjacent to the epoxide moiety in order to examine the effects, if any, that the epoxide has on subsequent reactions with respect to the regio- and stereochemical outcome. Dihydroxylation using osmium tetraoxide and Sharpless asymmetric dihydroxylation reactions have been extensively studied using substrates 29 and 31. Initial studies centred on the standard dihydroxylation conditions using AT-methylmorpholine-AT-oxide and catalytic osmium tetraoxide. The diastereomeric ratios were at best 3 2 for 29 and 2 1 for 31, indicating that the epoxide unit had very little influence on the stereochemical outcome of the reaction. This observation was not unexpected, since the epoxide moiety poses minimal steric demands (Scheme 21). [Pg.142]

Scheme 8 summarizes the introduction of the missing carbon atoms and the diastereoselective epoxidation of the C /C double bond using a Sharpless asymmetric epoxidation (SAE) of the allylic alcohol 64. The primary alcohol 62 was converted into the aldehyde 63 which served as the starting material for a Horner-Wadsworth-Emmons (HWE) reaction to afford an E-configured tri-substituted double bond. The next steps introduced the sulfone moiety via a Mukaiyama redox condensation and a subsequent sulfide to sulfone oxidation. The sequence toward the allylic alcohol 64 was com-... [Pg.85]

Reactions where NLE have been discovered include Sharpless asymmetric epoxi-dation of allylic alcohols, enantioselective oxidation of sulfides to sulfoxides, Diels-Alder and hetero-Diels-Alder reactions, carbonyl-ene reactions, addition of MesSiCN or organometallics on aldehydes, conjugated additions of organometal-lics on enones, enantioselective hydrogenations, copolymerization, and the Henry reaction. Because of the diversity of the reactions, it is more convenient to classify the examples according to the types of catalyst involved. [Pg.213]

Earlier on in our work, we also used the other legendary Sharpless oxidation, the asymmetric epoxidation [22] for the transformation of the allylic alcohol 17 into the epoxide 18. In the presence of (+)-diethyl tartrate, 17 was converted... [Pg.194]

Aldol products do not have to come from an aldol condensation. In another example of catalysis by a small organic molecule, Jeffrey Bode of UC Santa Barbara reports (J- Am. Chem. Soc. 2004,126, 8126) that the thioazolium salt 7 effects the rearrangement of an epoxy aldehyde such as 6 to the aldol product 8. This is a net oxidation of the aldehyde, and reduction of the epoxide. As epoxy aldehydes such as 6 are readily available by Sharpless asymmetric epoxidation, this should be a general route to enantiomerically-aldol products. The rearrangement also works with an aziridine aldehyde such as 9, to give the ff-amino ester 10. [Pg.62]

The epoxidation of alkenylsilanols parallels that of allylic alcohols in exhibiting good enantioselectivities339. Kinetic resolution of the alkenylsilanol 213 by the Sharpless asymmetric epoxidation has been accomplished, with the rate difference for the oxidation of the enantiomers of 213 being unusually high (>11)340. [Pg.1180]

Transformation of alkene 9 into diol 30 is a Sharpless asymmetric dihydroxylation.8 Its catalytic cycle with K3Fe(CNV, as co-oxidant is shown below. [Pg.129]

The known allylic alcohol 9 derived from protected dimethyl tartrate is exposed to Sharpless asymmetric epoxidation conditions with (-)-diethyl D-tartrate. The reaction yields exclusively the anti epoxide 10 in 77 % yield. In contrast to the above mentioned epoxidation of the ribose derived allylic alcohol, in this case epoxidation of 9 with MCPBA at 0 °C resulted in a 65 35 mixture of syn/anti diastereomers. The Sharpless epoxidation of primary and secondary allylic alcohols discovered in 1980 is a powerful reagent-controlled reaction.12 The use of titanium(IV) tetraisopropoxide as catalyst, tert-butylhydro-peroxide as oxidant, and an enantiopure dialkyl tartrate as chiral auxiliary accomplishes the epoxidation of allylic alcohols with excellent stereoselectivity. If the reaction is kept absolutely dry, catalytic amounts of the dialkyl tartrate(titanium)(IV) complex are sufficient. [Pg.202]

A reaction of furylbutenol 37 under Sharpless asymmetric oxidation conditions afforded the epoxide 38, which was further converted into an antitumor antibiotic, asperlin 39 <95H425>. [Pg.127]

Asymmetric oxidations have followed the usual development pathway where face selectivity was observed through the use of chiral auxiliaries and templates. The breakthrough came with the Sharpless asymmetric epoxidation method, which, although stoichiometric, allowed for a wide range of substrates and the stereochemistry of the product to be controlled in a predictable manner.4... [Pg.123]

Sharpless asymmetric epoxidation of allylic alcohols, asymmetric epoxidation of conjugated ketones, asymmetric sulfoxidations catalyzed, or mediated, by chiral titanium complexes, and allylic oxidations are the main classes of oxidation where asymmetric amplification effects have been discovered. The various references are listed in Table 4 with the maximum amplification index observed. [Pg.278]


See other pages where Sharpless asymmetric oxidation is mentioned: [Pg.401]    [Pg.235]    [Pg.401]    [Pg.235]    [Pg.17]    [Pg.431]    [Pg.434]    [Pg.436]    [Pg.766]    [Pg.769]    [Pg.778]    [Pg.826]    [Pg.43]    [Pg.125]    [Pg.67]    [Pg.94]    [Pg.826]    [Pg.101]    [Pg.117]    [Pg.120]    [Pg.27]    [Pg.34]    [Pg.140]    [Pg.328]    [Pg.228]    [Pg.102]    [Pg.116]    [Pg.89]    [Pg.89]   
See also in sourсe #XX -- [ Pg.1082 ]




SEARCH



Asymmetric oxidation

Catalytic Asymmetric Synthesis Sharpless Oxidations of Allylic alcohols

Oxidation Sharpless-Katsuki asymmetric epoxidation

Sharpless

Sharpless asymmetric

Sharpless asymmetric epoxidation of allylic amine oxides

Sharpless oxidation

© 2024 chempedia.info