Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation-reduction toxicity

Chemical treatment is a class of processes in which specific chemicals are added to wastes or to contaminated media in order to achieve detoxification. Depending on the nature of the contaminants, the chemical processes required will include pH adjustment, lysis, oxidation, reduction or a combination of these. Thus, chemical treatment is used to effect a chemical transformation of the waste to an innocuous or less toxic form. In addition, chemical treatment is often used to prepare for or facilitate the treatment of wastes by other technologies. Figure 12 identifies specific treatment processes which perform these functions. [Pg.143]

Chemical detoxification uses oxidation, reduction, neutralization, and hydrolysis to reduce the toxicity of the contaminants. The basic theory is similar to that of treating pumped groundwater. [Pg.633]

An evaluation of the fate of trace metals in surface and sub-surface waters requires more detailed consideration of complexation, adsorption, coagulation, oxidation-reduction, and biological interactions. These processes can affect metals, solubility, toxicity, availability, physical transport, and corrosion potential. As a result of a need to describe the complex interactions involved in these situations, various models have been developed to address a number of specific situations. These are called equilibrium or speciation models because the user is provided (model output) with the distribution of various species. [Pg.57]

Indicine IV-oxide (169) (Scheme 36) is a clinically important pyrrolizidine alkaloid being used in the treatment of neoplasms. The compound is an attractive drug candidate because it does not have the acute toxicity observed in other pyrrolizidine alkaloids. Indicine IV-oxide apparently demonstrates increased biological activity and toxicity after reduction to the tertiary amine. Duffel and Gillespie (90) demonstrated that horseradish peroxidase catalyzes the reduction of indicine IV-oxide to indicine in an anaerobic reaction requiring a reduced pyridine nucleotide (either NADH or NADPH) and a flavin coenzyme (FMN or FAD). Rat liver microsomes and the 100,000 x g supernatant fraction also catalyze the reduction of the IV-oxide, and cofactor requirements and inhibition characteristics with these enzyme systems are similar to those exhibited by horseradish peroxidase. Sodium azide inhibited the TV-oxide reduction reaction, while aminotriazole did not. With rat liver microsomes, IV-octylamine decreased... [Pg.397]

The toxicity (before and after treatment) of solutions subjected to a chemical or electrochemical oxidation/reduction treatment should always be tested. [Pg.223]

Environmental fate Chemicals released in the environment are suscephble to several degradahon pathways, including chemical (i.e., hydrolysis, oxidation, reduction, dealkylahon, dealkoxylation, decarboxylahon, methylation, isomerization, and conjugation), photolysis or photooxidahon and biodegradation. Compounds transformed by one or more of these processes may result in the formation of more toxic or less toxic substances. In addihon, the transformed product(s) will behave differently from the parent compound due to changes in their physicochemical properties. Many researchers focus their attention on transformahon rates rather than the transformahon products. Consequently, only limited data exist on the transitional and resultant end products. Where available, compounds that are transformed into identified products as weh as environmental fate rate constants and/or half-lives are listed. [Pg.21]

The presence of multiple metabolites in the serum of neonates treated with chloramphenicol suggests that the biotransformation of chloramphenicol takes place by multiple routes to include oxidation, reduction, and conjugation. The presence of particular metabolites does not appear to correlate with toxicity. [Pg.547]

The introduction of fluorine atoms in a molecule can be used to modify the processes and the rates of metabolism of the drug, in order to extend the plasma half-life or avoid the formation of toxic metabolites. Due to the properties of the fluorine atom, in particular its electronic effects, it may interact differently during the biotransformation steps, according to the type of processes involved (oxidative, reductive, hydrolytic, etc), which allow the clearance of the exogen molecule (i.e., the elimination of the active substance from the organism). [Pg.84]

Francis (1990) has summarized the numerous possible microbially mediated reactions resulting in the mobilization or immobilization of metals and found that major interactions include oxidation-reduction processes, biosorption and immobilization by cell biomass and exudates, and mobilization by microbial metabolites. A profound issue in metal remediation is that through microbial action, metals can readily be re-mobilized, creating toxicity issues in sites where metals are not completely removed. [Pg.321]


See other pages where Oxidation-reduction toxicity is mentioned: [Pg.401]    [Pg.160]    [Pg.46]    [Pg.421]    [Pg.137]    [Pg.113]    [Pg.25]    [Pg.43]    [Pg.173]    [Pg.437]    [Pg.700]    [Pg.132]    [Pg.1025]    [Pg.1164]    [Pg.1482]    [Pg.339]    [Pg.246]    [Pg.84]    [Pg.171]    [Pg.64]    [Pg.102]    [Pg.329]    [Pg.260]    [Pg.215]    [Pg.283]    [Pg.132]    [Pg.1025]    [Pg.1164]    [Pg.1482]    [Pg.48]    [Pg.161]    [Pg.207]    [Pg.60]    [Pg.318]    [Pg.320]    [Pg.658]    [Pg.298]    [Pg.69]    [Pg.353]    [Pg.11]   


SEARCH



Toxicity reduction

© 2024 chempedia.info