Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation allylic alcohol isomerization

Figure 7.11 presents the mechanism of propylene oxide synthesis by allyl alcohol isomerization. This assumption correlates well with experimental data the kinetic curve shape... [Pg.248]

Allyl alcohol is produced by the catalytic isomerization of propylene oxide at approximately 280°C. The reaction is catalyzed with lithium phosphate. A selectivity around 98% could be obtained at a propylene oxide conversion around 25% ... [Pg.225]

Examples for necessary process improvements through catalyst research are the development of one-step processes for a number of bulk products like acetaldehyde and acetic acid (from ethane), phenol (from benzene), acrolein (from propane), or allyl alcohol (from acrolein). For example, allyl alcohol, a chemical which is used in the production of plasticizers, flame resistors and fungicides, can be manufactured via gas-phase acetoxylation of propene in the Hoechst [1] or Bayer process [2], isomerization of propene oxide (BASF-Wyandotte), or by technologies involving the alkaline hydrolysis of allyl chloride (Dow and Shell) thereby producing stoichiometric amounts of unavoidable by-products. However, if there is a catalyst... [Pg.167]

The isomerization of allylic alcohols provides an enol (or enolate) intermediate, which tautomerizes to afford the saturated carbonyl compound (Equation (8)). The isomerization of allylic alcohols to saturated carbonyl compounds is a useful synthetic process with high atom economy, which eliminates conventional two-step sequential oxidation and reduction.25,26 A catalytic one-step transformation, which is equivalent to an internal reduction/oxidation process, is a conceptually attractive strategy due to easy access to allylic alcohols.27-29 A variety of transition metal complexes have been employed for the isomerization of allylic alcohols, as shown below. [Pg.76]

The intermolecular Heck reaction of halopyridines provides an alternative route to functionalized pyridines, circumventing the functional group compatibility problems encountered in other methods. 3-Bromopyridine has often been used as a substrate for the Heck reaction [124-126]. For example, ketone 155 was obtained from the Heck reaction of 3-bromo-2-methoxy-5-chloropyridine (153) with allylic alcohol 154 [125]. The mechanism for such a synthetically useful coupling warrants additional comments oxidative addition of 3-bromopyridine 153 to Pd(0) proceeds as usual to give the palladium intermediate 156. Subsequent insertion of allylic alcohol 154 to 156 gives intermediate 157. Reductive elimination of 157 gives enol 158, which then isomerizes to afford ketone 155 as the ultimate product This tactic is frequently used in the synthesis of ketones from allylic alcohols. [Pg.213]

The growing interest in enantioselective isomerization of meso oxiranes to allylic alcohols arises from the ready availabihty of starting materials and the synthetic value of the homochiral products. First apphed to simple meso cycloalkene oxides, this methodology has been successfully exteuded to fuuctioualized meso oxiranes, and even to the kinetic resolution of racemic oxiranes, demonstrating its potential in accessing highly advanced synthons. [Pg.1178]

Table 2 reports a selection of these two types of HCLA, used in stoichiometric amount, in the isomerization of cyclohexene oxide into the corresponding allylic alcohol. [Pg.1180]

The RLi homochiral ligand complexes are seldom used for the base-promoted isomerization of oxiranes into allylic alcohols because their poor chemoselectivity lead to complex mixtures of products. As examples, the treatment of cyclohexene oxide by a 1 1 i-BuLi/(—)-sparteine mixture in ether at low temperature provides a mixture of three different products arising respectively from -deprotonation (75), a-deprotonation (76) and nucleophilic addition (77) (Scheme 32) . When exposed to similar conditions, the disubstituted cyclooctene oxide 78 affords a nearly 1 1 mixture of a- and -deprotonation products (79 and 80) with moderate ee (Scheme 32, entry 1). Further studies have demonstrated that the a//3 ratio depends strongly on the type of ligand used (Scheme 32, entry 1 vs. entry 2) . ... [Pg.1190]

Catalytic reduction of codeine gives dihydrocodeine and Oppenauer oxidation (a ketone such as acetone and an aluminum alkoxide, the ketone being reduced to an alcohol) gives hydrocodone. Hydrocodone can also be prepared directly from codeine with a metal catalyst, which isomerizes the allylic alcohol to a ketone. Codeine is prepared by methylation of morphine, which is isolated from the opium poppy. Hydrocodone is more potent than codeine. Acetaminophen is a mild analgesic and is discussed in Section 8. [Pg.424]

When the commodity chemical propylene oxide is heated to high temperature in the gas phase in a shock tube, unimolecular rearrangement reactions occur that generate the CsHgO isomers allyl alcohol, methyl vinyl edier, propanal, and acetone (Figure 15.9). Dubnikova and Lifshitz carried out a series of calculations to determine the mechanistic pathway(s) for each isomerization, with comparison of activation parameters to those determined from Arrhenius fits to experimental rate data to validate the theoretical protocol. [Pg.544]

Oxidation of the allylic carbon of alkenes may lead to allylic alcohols and derivatives or a, 3-unsaturated carbonyl compounds. Selenium dioxide is the reagent of choice to carry out the former transformation. In the latter process, which is more difficult to accomplish, Cr(VI) compounds are usually applied. In certain cases, mixture of products of both types of oxidation, as well as isomeric compounds resulting from allylic rearrangement, may be formed. Oxidation of 2-alkenes to the corresponding cc,p-unsaturated carboxylic acids, particularly the oxidation of propylene to acrolein and acrylic acid, as well as ammoxidation to acrylonitrile, has commercial importance (see Sections 9.5.2 and 9.5.3). [Pg.483]

Benzamido-cinnamic acid, 20, 38, 353 Benzofuran polymerization, 181 Benzoin condensation, 326 Benzomorphans, 37 Benzycinchoninium bromide, 334 Benzycinchoninium chloride, 334, 338 Bifiinctional catalysts, 328 Bifiinctional ketones, enantioselectivity, 66 BINAP allylation, 194 allylic alcohols, 46 axial chirality, 18 complex catalysts, 47 cyclic substrates, 115, 117 double hydrogenation, 72 Heck reaction, 191 hydrogen incorporation, 51 hydrogen shift, 100 hydrogenation, 18, 28, 57, 309 hydrosilylation, 126 inclusion complexes, oxides, 97 ligands, 19, 105 molecular structure, 50, 115 mono- and bis-complexes, 106 NMR spectra, 105 olefin isomerization, 96... [Pg.192]

Potassium nitrosodisulfonate, 258 Trimethylsilyl chlorochromate, 327 By hydrolysis of acetals or thioacetals Amberlyst ion-exchange resin, 152 Methylthiomethyl p-tolyl sulfone, 192 By isomerization of allylic alcohols N-Lithioethylenediamine, 157 By oxidation of aromatic side chains Trimethylsilyl chlorochromate, 327 From oxidative cleavage of alkenes [Bis(salicylidene-7-iminopropyl)-methylamine]cobalt(II)... [Pg.378]

There are four processes for industrial production of allyl alcohol. One is alkaline hydrolysis of allyl chloride. A second process has two steps. The first step is oxidation of propylene to acrolein and the second step is reduction of acrolein to allyl alcohol by a hydrogen transfer reaction, using isopropyl alcohol. At present, neither of these two processes is being used industrially. Another process is isomerization of propylene oxide. Until 1984. all allyl alcohol manufacturers were using this process. Since 1985 Showa Denko K.K. has produced allyl alcohol industrially by a new process which they developed- This process, which was developed partly for the purpose of producing epichlorohydrin via allyl alcohol as the intermediate, has the potential to be the main process for production of allyl alcohol. The reaction scheme is as follows ... [Pg.59]

Olefins, belonging to primary allylic alcohols and possessing a (cis) configuration, suffer isomerization to the (trans) compound during the oxidation of the alcohol to aldehyde with PCC.268 This isomerization is not avoided by the addition of sodium acetate as buffer.189... [Pg.54]

PCC reacts with tertiary allylic alcohols, forming an intermediate chromate ester that evolves giving a conjugated enone or enal. Sometimes, the isomeric chromate ester produces the epoxidation of the alkene, giving an epoxy alcohol that can be further oxidized to an epoxy ketone. [Pg.55]

TPAP is able to produce the isomerization of allylic alcohols into saturated ketones and aldehydes.107 This reaction is not performed under the standard conditions for the oxidation of alcohols, employing NMO as secondary oxidant, and is only efficient under very exacting experimental conditions. [Pg.237]

TPAP causes the isomerization of an allylic alcohol into an aldehyde. Best results are obtained using fluorobenzene as solvent, in the absence of a secondary oxidant and in the... [Pg.237]

Sometimes, an alkene cis-trans isomerization is observed during the oxidation of allylic alcohols with active Mn02. This side reaction occurs during the oxidation of allylic alcohols with many different oxidants. In fact, active Mn02 is quite refractory to induce such isomerizations,73 when alkene isomerizations must be avoided being the oxidant of choice. The addition of Na2C03 and the performance of the oxidation at 0°C help to prevent such isomerizations.74... [Pg.308]


See other pages where Oxidation allylic alcohol isomerization is mentioned: [Pg.749]    [Pg.9]    [Pg.819]    [Pg.105]    [Pg.12]    [Pg.223]    [Pg.438]    [Pg.46]    [Pg.22]    [Pg.217]    [Pg.337]    [Pg.224]    [Pg.93]    [Pg.1061]    [Pg.69]    [Pg.501]    [Pg.57]    [Pg.230]    [Pg.105]    [Pg.350]    [Pg.501]    [Pg.545]    [Pg.321]    [Pg.838]    [Pg.105]    [Pg.350]    [Pg.819]    [Pg.573]    [Pg.55]    [Pg.877]    [Pg.185]   


SEARCH



Allyl alcohols oxidation

Allyl alcohols, isomerization

Allyl isomerization

Allyl oxide

Allylic alcohols isomerization

Allylic isomerization

Allylic oxidation

Isomeric alcohol

Oxidation allylic alcohols

© 2024 chempedia.info