Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular Heck Reaction

Intramolecular reactions with alkenes. While the intermolecular reaction is limited to unhindered alkenes, the intramolecular version permits the participation of even hindered substituted alkenes, and various cyclic compounds are prepared by the intramolecular Heck reaction. Particularly the... [Pg.149]

In 1996, the first examples of intermolecular microwave-assisted Heck reactions were published [85]. Among these, the successful coupling of iodoben-zene with 2,3-dihydrofuran in only 6 min was reported (Scheme 75). Interestingly, thermal heating procedures (125-150 °C) resulted in the formation of complex product mixtures affording less than 20% of the expected 2-phenyl-2,3-dihydrofuran. The authors hypothesize that this difference is the result of well-known advantages of microwave irradiation, e.g., elimination of wall effects and low thermal gradients in the reaction mixture. [Pg.194]

In 2004, Molander et al. developed another type of chiral sulfur-containing ligands for the intermolecular Heck reaction. Thus, their corresponding novel cyclopropane-based phosphorus/sulfur palladium complexes proved to be active as catalysts for the reaction between phenyltriflate and dihydrofuran, providing at high temperature a mixture of the expected product and its iso-merised analogue (Scheme 7.7). The major isomer C was obtained with a maximum enantioseleetivity of 63% ee. [Pg.239]

Shibasaki and coworkers [87] described the first enantioselective combination of this type in their synthesis of halenaquinone (6/1-162) (Scheme 6/1.43). The key step is an intermolecular Suzuki reaction of 6/1-159 and 6/1-160, followed by an enantioselective Heck reaction in the presence of (S)-BINAP to give 6/1-161. The ee-value was good, but the yield was low. [Pg.386]

A few additional Pd-catalyzed schemes have been employed for Ilac type cyclization chemistry. Palladium-phenanthroline complexes were used by the Ragaini group to prepare indoles via the intermolecular cyclization of nitroarenes and alkynes in the presence of carbon monoxide <06JOC3748>. Jia and Zhu employed Pd-catalysis for the annulation of o-haloanilines with aldehydes <06JOC7826>. A one-pot Ugi/Heck reaction was employed in the preparation of polysubstituted indoles from a four-component reaction system of acrylic aldehydes, bromoanilines, acids, and isocyanides <06TL4683>. [Pg.155]

The Heck reaction, a palladium-catalyzed vinylic substitution, is conducted with olefins and organohalides or pseudohalides are frequently used as reactants [15, 16], One of the strengths of the method is that it enables the direct monofunctionalization of a vinylic carbon, which is difficult to achieve by other means. Numerous elegant transformations based on Heck chemistry have been developed in natural and non-natural product synthesis. Intermolecular reactions with cyclic and acyclic al-kenes, and intramolecular cyclization procedures, have led to the assembly of a variety of complex and sterically congested molecules. [Pg.381]

Palladium-catalyzed arylation of olefins and the analogous alkenylation (Heck reaction) are the useful synthetic methods for carbon-carbon bond formation.60 Although these reactions have been known for over 20 years, it was only in 1989 that the asymmetric Heck reaction was pioneered in independent work by Sato et al.60d and Carpenter et al.61 These scientists demonstrated that intramolecular cyclization of an alkenyl iodide or triflate yielded chiral cyclic compounds with approximately 45% ee. The first example of the intermolecular asymmetric Heck reaction was reported by Ozawa et al.60c Under appropriate conditions, the major product was obtained in over 96% ee for a variety of aryl triflates.62... [Pg.471]

Palladium chemistry involving heterocycles has its unique characteristics stemming from the heterocycles inherently different structural and electronic properties in comparison to the corresponding carbocyclic aryl compounds. One example illustrating the striking difference in reactivity between a heteroarene and a carbocyclic arene is the heteroaryl Heck reaction (vide infra, see Section 1.4). We define a heteroaryl Heck reaction as an intermolecular or an intramolecular Heck reaction occurring onto a heteroaryl recipient. Intermolecular Heck reactions of carbocyclic arenes as the recipients are rare [12a-d], whereas heterocycles including thiophenes, furans, thiazoles, oxazoles, imidazoles, pyrroles and indoles, etc. are excellent substrates. For instance, the heteroaryl Heck reaction of 2-chloro-3,6-diethylpyrazine (1) and benzoxazole occurred at the C(2) position of benzoxazole to elaborate pyrazinylbenzoxazole 2 [12e]. [Pg.1]

While intermolecular Heck reaction of a carbocyclic arene as the recipient is reluctant to occur, intramolecular Heck reaction of carbocyclic arenes has been well-precedented as illustrated by the following two examples [13]. [Pg.1]

One active field of research involving the Heck reaction is asymmetric Heck reactions (AHR). The objective is to achieve enantiomerically-enriched Heck products from racemic substrates using a catalytic amount of chiral ligands, making the process more practical and economical Although intermolecular Heck reactions that occurred onto carbocyclic arenes are rare, they readily take place onto many heterocycles including thiophenes, furans, thiazoles, oxazoles,... [Pg.16]

Normally, the oxidative addition of an aryl chloride to Pd(0) is reluctant to take place. But such a process is greatly accelerated in the presence of sterically hindered, electron-rich phosphine ligands [e.g., P(/-Bu)3 or tricyclohexylphosphine]. In late 1990s, Reetz [76] and Fu [77] successfully conducted intermolecular Heck reactions using arylchlorides as substrates, as exemplified by the conversion of p-chloroanisole to adduct 77 [77], The applications of this discovery will surely be reflected on future Heck reactions of non-activated heteroaryl chlorides. [Pg.18]

As will be seen in this chapter and in the rest of the book, the Heck reaction and its numerous variations represent a fantastically powerful set of tools available to the heterocyclic chemist. Although most Heck chemistry that involves pyrroles is intramolecular or entails synthesis of the pyrrole ring, a few intermolecular Heck reactions of pyrroles are known. Simple pyrroles (pyrrole, A-methylpyrrole, A-(phenylsulfonyl)pyrrole) react with 2-chloro-3,6-dialkylpyrazines under Heck conditions to give mixtures of C-2 and C-3 pyrrole-substituted pyrazines in low... [Pg.54]

The intermolecular Heck reaction of halopyridines provides an alternative route to functionalized pyridines, circumventing the functional group compatibility problems encountered in other methods. 3-Bromopyridine has often been used as a substrate for the Heck reaction [124-126]. For example, ketone 155 was obtained from the Heck reaction of 3-bromo-2-methoxy-5-chloropyridine (153) with allylic alcohol 154 [125]. The mechanism for such a synthetically useful coupling warrants additional comments oxidative addition of 3-bromopyridine 153 to Pd(0) proceeds as usual to give the palladium intermediate 156. Subsequent insertion of allylic alcohol 154 to 156 gives intermediate 157. Reductive elimination of 157 gives enol 158, which then isomerizes to afford ketone 155 as the ultimate product This tactic is frequently used in the synthesis of ketones from allylic alcohols. [Pg.213]

In one case, the intermolecular Heck reaction of 3-pyridyltriflate with ethyl acrylate was accelerated by LiCl to give 159 [127,128], Here, both electronic and steric effects all favored p-substitution. In another case, however, electronic effects prevailed and complete a-substitution was observed. In the presence of an electron-donating substituent (i.e., a protected amine), 3-bromopyridine 160 was coupled with f-butoxyethylene to give 3-pyridyl methyl ketone 162 [126]. The regiochemistry of the Heck reaction was governed by inductive effects, leading to intermediate 161. [Pg.214]

Heck, intramolecular Heck and heteroaryl Heck reactions 6.5.1 Intermolecular Heck reaction... [Pg.283]

The intermolecular Heck reaction of 3-bromofuran and tosylallyamine 88 gave adduct 89 under the classical Heck conditions [79], Subsequent Rh-catalyzed hydroformylation with ring closure occurred regioselectively to furnish the hydroxypyrrolidine, which was dehydrated using catalytic HC1 to afford dihydropyrrole 90. [Pg.284]

Generally, the intermolecular Heck reaction between 2-iodo-, 4-iodo- and 5-iodo-l-methylimidazoles and olefins suffers from low yields (< 25%). Therefore, these transformations are of limited synthetic utility [29]. In one case, variable yields for adduct 62 (15-58%) were observed for the Heck reaction of 5-bromo-l-methyl-2-phenylthio-lf/-imidazole (61) and a large excess of methyl acrylate [42]. [Pg.347]

Palladium chemistry of heterocycles has its idiosyncrasies stemming from their different structural properties from the corresponding carbocyclic aryl compounds. Even activated chloroheterocycles are sufficiently reactive to undergo Pd-catalyzed reactions. As a consequence of a and y activation of heteroaryl halides, Pd-catalyzed chemistry may take place regioselectively at the activated positions, a phenomenon rarely seen in carbocyclic aryl halides. In addition, another salient peculiarity in palladium chemistry of heterocycles is the so-called heteroaryl Heck reaction . For instance, while intermolecular palladium-catalyzed arylations of carbocyclic arenes are rare, palladium-catalyzed arylations of azoles and many other heterocycles readily take place. Therefore, the principal aim of this book is to highlight important palladium-mediated reactions of heterocycles with emphasis on the unique characteristics of individual heterocycles. [Pg.416]

Intermolecular, enantioselective Heck reactions require a cyclic olefin as substrate, since syn carbopal-ladation of a cyclic olefin results in a geometrically defined a-alkyl-palladium compound. By necessity, the subsequent syn dehydropalladation must take place away from the newly formed chiral centre, thereby affording a chiral product. [Pg.104]

The use of cyclic alkenes as substrates or the preparation of cyclic structures in the Heck reaction allows an asymmetric variation of the Heck reaction. An example of an intermolecular process is the addition of arenes to 1,2-dihydro furan using BINAP as the ligand, reported by Hayashi [23], Since the addition of palladium-aryl occurs in a syn fashion to a cyclic compound, the 13-hydride elimination cannot take place at the carbon that carries the phenyl group just added (carbon 1), and therefore it takes place at the carbon atom at the other side of palladium (carbon 3). The normal Heck products would not be chiral because an alkene is formed at the position where the aryl group is added. A side-reaction that occurs is the isomerisation of the alkene. Figure 13.20 illustrates this, omitting catalyst details and isomerisation products. [Pg.285]

Intermolecular or intramolecular Heck reaction that occurs onto a heteroaryl recipient. [Pg.287]

Palladium(0)-catalyzed cross-coupling of aryl halides and alkenes (i.e., the Heck reaction) is widely used in organic chemistry. Oxidative Heck reactions can be achieved by forming the Pd -aryl intermediate via direct palladation of an arene C - H bond. Intramolecular reactions of this type were described in Sect. 4.1.2, but considerable effort has also been directed toward the development of intermolecular reactions. Early examples by Fu-jiwara and others used organic peroxides and related oxidants to promote catalytic turnover [182-184]. This section will highlight several recent examples that use BQ or dioxygen as the stoichiometric oxidant. [Pg.103]

In Rao s total synthesis of niphatesines, a key intermediate 91 was elaborated from an intermolecular Heck reaction of 3-bromopyridine with non-8-en-ol <93TL8329>. In another case, Bracher et al. synthesized a natur ly occurring P-carboline, infractine (93), from p-carboline-l-triflate (92) in a two step process consisting of a Heck reaction with methyl acrylate followed by a hydrogenation <95PHA182>. Their approach provided an expeditious route to infractine, although the Heck reaction was low yielding. [Pg.49]

The main steps in the currently accepted catalytic cycle of the Heck reaction are oxidative addition, carbopalla-dation (G=G insertion), and / -hydride elimination. It is well established that both, the insertion as well as the elimination step, are m-stereospecific. Only in some cases has formal /r/ / i--elimination been observed. For example, exposure of the l,3-dibromo-4-(dihydronaphthyloxy)benzene derivative 16 and an alkene 1-R to a palladium source in the presence of a base led to a sequential intra-intermolecular twofold Heck reaction furnishing the alkenylated tetracyclic products 17 in good to excellent yields (Scheme 9). " In the rate-determining step, the base removes a proton in an antiperiplanar orientation from the benzylic palladium intermediate. The best amine base was found to be l,4-diazabicyclo[2.2.2]octane, which apparently has an optimal shape for this proton abstraction. [Pg.314]

Scheme 9 Sequential intra-intermolecular twofold Heck reaction involving a trans-/ -hydride elimination. ... Scheme 9 Sequential intra-intermolecular twofold Heck reaction involving a trans-/ -hydride elimination. ...
Intramolecular variants of this reaction are often utilized in the synthesis of (poly)cyclic systems, while the intermolecular variant of the transformation is the key step in one of the most frequently studied and utilized carbon-carbon bond forming reactions, the Heck reaction (for details see Chapter 2.2.). [Pg.12]

As mentioned previously, the partially reduced forms of five membered heteroaromatic systems might act as olefins in insertion reactions. This behaviour is characteristic particularly of dihydrofuranes. The olefin insertion and the following / hydride elimination should in principle lead to a trisubstituted olefin, which is rarely observed, however. Typical products of this reaction are 2-aryl-2,3-dihydrofuranes. A characteristic example of such a reaction is presented in 6.54. The coupling of 4-iodoanisole and dihydrofurane led to the formation of the chiral 2-anisyl-2,3-dihydrofurane in excellent yield.83 The shift of the double bond, which leads to the creation of a new centre of chirality in the molecule, opens up the way for enantioselective transformations. Both intermolecular and intramolecular variants of the asymmetric Heck reaction have been studied extensively.84... [Pg.118]

The participation of halopyrroles in Heck coupling is mostly limited to intramolecular transformations. In a recent example of intermolecular Heck reaction different A-protcctcd 3-iodo-4-trimethylsilyl-pyrroles were coupled... [Pg.118]

The intermolecular Heck reactions of oxazoles and thiazoles with olefins are not too common. They are rarely high yielding since in several cases they are biased by dehalogenation. Due to this reason the olefination of these systems is usually achieved through Stille coupling with vinylstannanes. [Pg.119]


See other pages where Intermolecular Heck Reaction is mentioned: [Pg.564]    [Pg.564]    [Pg.22]    [Pg.102]    [Pg.235]    [Pg.236]    [Pg.17]    [Pg.29]    [Pg.1]    [Pg.286]    [Pg.494]    [Pg.691]    [Pg.49]    [Pg.316]    [Pg.351]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Allenes, intermolecular Heck reactions

Dihydrofurans, intermolecular asymmetric Heck reactions

Dihydropyrroles, intermolecular asymmetric Heck reactions

Elimination reactions intermolecular Heck reaction

Heck intermolecular

Heck reaction intermolecular reactions

Heck reaction intermolecular reactions

Heck reactions asymmetric intermolecular

Heterocyclic compounds intermolecular Heck reaction

Intermolecular Heck coupling reactions

Intermolecular Heck reaction, solid support

Intermolecular Mizoroki-Heck Reactions

Intermolecular reactions asymmetric Heck reaction

Microwave irradiation intermolecular Heck reaction

Oxidative addition intermolecular Heck reaction

Palladium®) complexes intermolecular Heck reaction

RXN5 Intermolecular HECK Reaction

Scope, Mechanism, and Other Fundamental Aspects of the Intermolecular Heck Reaction

© 2024 chempedia.info