Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optimization inequality constraints

Each of the inequality constraints gj(z) multiphed by what is called a Kuhn-Tucker multiplier is added to form the Lagrange function. The necessaiy conditions for optimality, called the Karush-Kuhn-Tucker conditions for inequality-constrained optimization problems, are... [Pg.484]

Assume certain inequality constraints will be active at the final solution. The necessaiy conditions for optimality are... [Pg.486]

In this case, there are n design variables, with p equality constraints and q inequality constraints. The existence of such constraints can simplify the optimization problem by reducing the size of the problem to be searched or avoiding problematic regions of the objective function. In general though, the existence of the constraints complicates the problem relative to the problem with no constraints. [Pg.42]

Now consider the influence of the inequality constraints on the optimization problem. The effect of inequality constraints is to reduce the size of the solution space that must be searched. However, the way in which the constraints bound the feasible region is important. Figure 3.10 illustrates the concept of convex and nonconvex regions. [Pg.42]

An important class of the constrained optimization problems is one in which the objective function, equality constraints and inequality constraints are all linear. A linear function is one in which the dependent variables appear only to the first power. For example, a linear function of two variables x and x2 would be of the general form ... [Pg.43]

When the objective function, equality or inequality constraints of Equation 3.7 are nonlinear, the optimization... [Pg.45]

The addition of inequality constraints complicates the optimization. These inequality constraints can form convex or nonconvex regions. If the region is nonconvex, then this means that the search can be attracted to a local optimum, even if the objective function is convex in the case of a minimization problem or concave in the case of a maximization problem. In the case that a set of inequality constraints is linear, the resulting region is always convex. [Pg.54]

Thirdly, the inlet and outlet concentrations were specified such that one was fixed directly and the other determined by mass balance using flowrate and mass load. However, a number of variations are possible in the way that the process constraints on quantity (or flowrate) present themselves. For instance, it could happen that there is no direct specification of the water quantity (or flow) in a particular stream, as long as the contaminant load and the outlet concentration are observed. Furthermore, the vessel probably has minimum and maximum levels for effective operation. In that case the water quantity falls away as an equality constraints, to become an inequality constraints, thereby changing the nature of the optimization problem. [Pg.253]

The ingredients of formulating optimization problems include a mathematical model of the system, an objective function that quantifies a criterion to be extremized, variables that can serve as decisions, and, optionally, inequality constraints on the system. When represented in algebraic form, the general formulation of discrete/continu-ous optimization problems can be written as the following mixed integer optimization problem ... [Pg.60]

Now consider the imposition of inequality [g(x) < 0] and equality constraints 7i(x) = 0] in Fig. 3-55. Continuing the kinematic interpretation, the inequality constraints g(x) < 0 act as fences in the valley, and equality constraints h(x) = 0 act as "rails. Consider now a ball, constrained on a rail and within fences, to roll to its lowest point. This stationary point occurs when the normal forces exerted by the fences [- Vg(x )] and rails [- V/i(x )] on the ball are balanced by the force of gravity [— Vfix )]. This condition can be stated by the following Karush-Kuhn-Tucker (KKT) necessary conditions for constrained optimality ... [Pg.61]

Constraint Qualification For a local optimum to satisfy the KKT conditions, an additional regularity condition is required on the constraints. This can be defined in several ways. A typical condition is that the active constraints at x be linearly independent i.e., the matrix [Vh(x ) I VgA(x )] is full column rank, where gA is the vector of inequality constraints with elements that satisfy g x ) = 0. With this constraint qualification, the KKT multipliers (X, v) are guaranteed to be unique at the optimal solution. [Pg.61]

For optimization problems that are derived from (ordinary or partial) differential equation models, a number of advanced optimization strategies can be applied. Most of these problems are posed as NLPs, although recent work has also extended these models to MINLPs and global optimization formulations. For the optimization of profiles in time and space, indirect methods can be applied based on the optimality conditions of the infinite-dimensional problem using, for instance, the calculus of variations. However, these methods become difficult to apply if inequality constraints and discrete decisions are part of the optimization problem. Instead, current methods are based on NLP and MINLP formulations and can be divided into two classes ... [Pg.70]

Feasible region for an optimization problem involving two independent variables. The dashed lines represent the side of the inequality constraints in the plane that form part of the infeasible region. The heavy line shows the feasible region. [Pg.15]

For each of the following six problems, formulate the objective function, the equality constraints (if any), and the inequality constraints (if any). Specify and list the independent variables, the number of degrees of freedom, and the coefficients in the optimization problem. [Pg.28]

Constraints in optimization arise because a process must describe the physical bounds on the variables, empirical relations, and physical laws that apply to a specific problem, as mentioned in Section 1.4. How to develop models that take into account these constraints is the main focus of this chapter. Mathematical models are employed in all areas of science, engineering, and business to solve problems, design equipment, interpret data, and communicate information. Eykhoff (1974) defined a mathematical model as a representation of the essential aspects of an existing system (or a system to be constructed) which presents knowledge of that system in a usable form. For the purpose of optimization, we shall be concerned with developing quantitative expressions that will enable us to use mathematics and computer calculations to extract useful information. To optimize a process models may need to be developed for the objective function/, equality constraints g, and inequality constraints h. [Pg.38]

In Section 1.5 we briefly discussed the relationships of equality and inequality constraints in the context of independent and dependent variables. Normally in design and control calculations, it is important to eliminate redundant information and equations before any calculations are performed. Modem multivariable optimization software, however, does not require that the user clearly identify independent, dependent, or superfluous variables, or active or redundant constraints. If the number of independent equations is larger than the number of decision variables, the software informs you that no solution exists because the problem is overspecified. Current codes have incorporated diagnostic tools that permit the user to include all possible variables and constraints in the original problem formulation so that you do not necessarily have to eliminate constraints and variables prior to using the software. Keep in mind, however, that the smaller the dimensionality of the problem introduced into the software, the less time it takes to solve the problem. [Pg.66]

If this constraint is inactive, that is, the optimum value of xu is less than 40,000 kg/day, then, in effect, there are still 3 degrees of freedom. If, however, the optimization procedure yields a value of xn = 40,000 (the optimum lies on the constraint, such as shown in Figure 1.2), then inequality constraint/becomes an equality constraint, resulting in only 2 degrees of freedom that can be used for optimization. You should recognize that it is possible to add more inequality constraints, such as constraints on materials supplies, in the model, for example,... [Pg.72]

Now the analysis is much more complex, and it is clear that more potential equality constraints exist than variables if all of the inequality constraints become active. It is possible that optimization could lead to a situation where no degrees of freedom would be left—one set of the inequality constraints would be satisfied as equalities. This outcome means no variables remain to be optimized, and the optimal solution reached would be at the boundaries, a subset of the inequality constraints. [Pg.72]

We can state these ideas precisely as follows. Consider any optimization problem with n variables, let x be any feasible point, and let act(x) be the number of active constraints at x. Recall that a constraint is active at x if it holds as an equality there. Hence equality constraints are active at any feasible point, but an inequality constraint may be active or inactive. Remember to include simple upper or lower bounds on the variables when counting active constraints. We define the number of degrees of freedom (dof) at x as... [Pg.229]

Chapter 1 presents some examples of the constraints that occur in optimization problems. Constraints are classified as being inequality constraints or equality constraints, and as linear or nonlinear. Chapter 7 described the simplex method for solving problems with linear objective functions subject to linear constraints. This chapter treats more difficult problems involving minimization (or maximization) of a nonlinear objective function subject to linear or nonlinear constraints ... [Pg.265]

In problems in which there are n variables and m equality constraints, we could attempt to eliminate m variables by direct substitution. If all equality constraints can be removed, and there are no inequality constraints, the objective function can then be differentiated with respect to each of the remaining (n — m) variables and the derivatives set equal to zero. Alternatively, a computer code for unconstrained optimization can be employed to obtain x. If the objective function is convex (as in the preceding example) and the constraints form a convex region, then any stationary point is a global minimum. Unfortunately, very few problems in practice assume this simple form or even permit the elimination of all equality constraints. [Pg.266]

The KTC comprise both the necessary and sufficient conditions for optimality for smooth convex problems. In the problem (8.25)-(8.26), if the objective fix) and inequality constraint functions gj are convex, and the equality constraint functions hj are linear, then the feasible region of the problem is convex, and any local minimum is a global minimum. Further, if x is a feasible solution, if all the problem functions have continuous first derivatives at x, and if the gradients of the active constraints at x are independent, then x is optimal if and only if the KTC are satisfied at x. ... [Pg.280]

Many real problems do not satisfy these convexity assumptions. In chemical engineering applications, equality constraints often consist of input-output relations of process units that are often nonlinear. Convexity of the feasible region can only be guaranteed if these constraints are all linear. Also, it is often difficult to tell if an inequality constraint or objective function is convex or not. Hence it is often uncertain if a point satisfying the KTC is a local or global optimum, or even a saddle point. For problems with a few variables we can sometimes find all KTC solutions analytically and pick the one with the best objective function value. Otherwise, most numerical algorithms terminate when the KTC are satisfied to within some tolerance. The user usually specifies two separate tolerances a feasibility tolerance Sjr and an optimality tolerance s0. A point x is feasible to within if... [Pg.281]

This example focuses on the design and optimization of a steady-state staged column. Figure El 2.1 shows a typical column and some of the notation we will use, and Table El2.1 A lists the other variables and parameters. Feed is denoted by superscript F. Withdrawals take the subscripts of the withdrawal stage. Superscripts V for vapor and L for liquid are used as needed to distinguish between phases. If we number the stages from tihe bottom of the column (the reboiler) upward with k= 1, then V0 = L1 = 0, and at the top of the column, or the condenser, Vn = Ln+l = 0. We first formulate the equality constraints, then the inequality constraints, and lastly the objective function. [Pg.444]

As explained in Chapter 9, a branch-and-bound enumeration is nothing more than a search organized so that certain portions of the possible solution set are deleted from consideration. A tree is formed of nodes and branches (arcs). Each branch in the tree represents an added or modified inequality constraint to the problem defined for the prior node. Each node of the tree itself represents a nonlinear optimization problem without integer variables. [Pg.474]

All of the various optimization techniques described in previous chapters can be applied to one or more types of reactor models. The reactor model forms a set of constraints so that most optimization problems involving reactors must accommodate steady-state algebraic equations or dynamic differential equations as well as inequality constraints. [Pg.483]

Suppose the inequality constraints on ethylene and propylene production were changed to equality constraints (ethylene = 50,000 propylene = 20,000). The optimal solution for these conditions is shown as case 2 in Table E14.1B. This specification forces the use of DNG as well as ethane. [Pg.488]

The nonlinear programming problem based on objective function (/), model equations (b)-(g), and inequality constraints (was solved using the generalized reduced gradient method presented in Chapter 8. See Setalvad and coworkers (1989) for details on the parameter values used in the optimization calculations, the results of which are presented here. [Pg.504]

As discussed in Chapter 1, optimization of a large configuration of plant components can involve several levels of detail ranging from the most minute features of equipment design to the grand scale of international company operations. As an example of the size of the optimization problems solved in practice, Lowery et al. (1993) describe the optimization of a bisphenol-A plant via SQP involving 41,147 variables, 37,641 equations, 212 inequality constraints, and 289 plant measurements to identify the most profitable operating conditions. Perkins (1998) reviews the topic of plantwide optimization and its future. [Pg.516]

Process simulators contain the model of the process and thus contain the bulk of the constraints in an optimization problem. The equality constraints ( hard constraints ) include all the mathematical relations that constitute the material and energy balances, the rate equations, the phase relations, the controls, connecting variables, and methods of computing the physical properties used in any of the relations in the model. The inequality constraints ( soft constraints ) include material flow limits maximum heat exchanger areas pressure, temperature, and concentration upper and lower bounds environmental stipulations vessel hold-ups safety constraints and so on. A module is a model of an individual element in a flowsheet (e.g., a reactor) that can be coded, analyzed, debugged, and interpreted by itself. Examine Figure 15.3a and b. [Pg.518]

Although, as explained in Chapter 9, many optimization problems can be naturally formulated as mixed-integer programming problems, in this chapter we will consider only steady-state nonlinear programming problems in which the variables are continuous. In some cases it may be feasible to use binary variables (on-off) to include or exclude specific stream flows, alternative flowsheet topography, or different parameters. In the economic evaluation of processes, in design, or in control, usually only a few (5-50) variables are decision, or independent, variables amid a multitude of dependent variables (hundreds or thousands). The number of dependent variables in principle (but not necessarily in practice) is equivalent to the number of independent equality constraints plus the active inequality constraints in a process. The number of independent (decision) variables comprises the remaining set of variables whose values are unknown. Introduction into the model of a specification of the value of a variable, such as T = 400°C, is equivalent to the solution of an independent equation and reduces the total number of variables whose values are unknown by one. [Pg.520]

Infeasible path algorithms. The equality constraints and active inequality constraints are satisfied only at the stage on which the optimal solution is reached. [Pg.524]

With feasible path strategies, as the name implies, on each iteration you satisfy the equality and inequality constraints. The results of each iteration, therefore, provide a candidate design or feasible set of operating conditions for the plant, that is, sub-optimal. Infeasible path strategies, on the other hand, do not require exact solution of the constraints on each iteration. Thus, if an infeasible path method fails, the solution at termination may be of little value. Only at the optimal solution will you satisfy the constraints. [Pg.529]


See other pages where Optimization inequality constraints is mentioned: [Pg.6]    [Pg.340]    [Pg.189]    [Pg.54]    [Pg.184]    [Pg.63]    [Pg.66]    [Pg.14]    [Pg.15]    [Pg.280]    [Pg.280]    [Pg.284]    [Pg.443]    [Pg.461]    [Pg.526]    [Pg.568]    [Pg.569]   
See also in sourсe #XX -- [ Pg.619 ]




SEARCH



Algebraic inequality constraints optimization

Inequalities

Optimization constraints

© 2024 chempedia.info