Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical ultrafast

B. All-Optical Ultrafast Spatial Light Modulation and Parallel Optical Recording Based on Photoinduced Complex Refractive Index Changes in Guided Wave Geometry Containing Organic Dyes... [Pg.415]

The Springer Series in Optical Sciences, under the leadership of Editor-in-Chief William T. Rhodes, Georgia Institute of Technology, USA, provides an expanding selection of research monographs in all major areas of optics lasers and quantum optics, ultrafast phenomena, optical spectroscopy techniques, optoelectronics, quantum information, information optics, applied laser technology, industrial applications, and other topics of contemporary interest. [Pg.326]

Especially with LTG GaAs, materials became available that were nearly ideal for time-resolved THz spectroscopy. Due to the low growth temperature and the slight As excess incorporated, clusters are fonned which act as recombination sites for the excited carriers, leading to lifetimes of <250 fs [45], With such recombination lifetunes, THz radiators such as dipole anteimae or log-periodic spirals placed onto optoelectronic substrates and pumped with ultrafast lasers can be used to generate sub-picosecond pulses with optical bandwidths of 2-4 THz. Moreover, coherent sub-picosecond detection is possible, which enables both... [Pg.1249]

These limitations have recently been eliminated using solid-state sources of femtosecond pulses. Most of the femtosecond dye laser teclmology that was in wide use in the late 1980s [11] has been rendered obsolete by tliree teclmical developments the self-mode-locked Ti-sapphire oscillator [23, 24, 25, 26 and 27], the chirped-pulse, solid-state amplifier (CPA) [28, 29, 30 and 31], and the non-collinearly pumped optical parametric amplifier (OPA) [32, 33 and 34]- Moreover, although a number of investigators still construct home-built systems with narrowly chosen capabilities, it is now possible to obtain versatile, nearly state-of-the-art apparatus of the type described below Ifom commercial sources. Just as home-built NMR spectrometers capable of multidimensional or solid-state spectroscopies were still being home built in the late 1970s and now are almost exclusively based on commercially prepared apparatus, it is reasonable to expect that ultrafast spectroscopy in the next decade will be conducted almost exclusively with apparatus ifom conmiercial sources based around entirely solid-state systems. [Pg.1969]

The shortest optical pulses actually used so far (1998) in ultrafast spectroscopic experunents were obtained by Shank and co-workers from an amplified CPM laser [ ]. In these extraordinary experiments, a sequence of a pair of prisms... [Pg.1973]

Ippen E 1997 Characterizing optical components for ultrafast laser applications Optics 1997/98 Catalog (Irvine, CA Newport Corp.) pp 8-2-8-3... [Pg.1993]

Trebino R and Kane D J 1993 Using phase retrieval to measure the intensity and phase of ultrafast pulses frequency-resolved optical gating J. Opt. Soc. Am. A 10 1101-11... [Pg.1994]

Cong P, Deuhl H P and Simon J D 1993 Using optical coherence to measure the ultrafast electronic dephasIng of large molecules In room-temperature liquids Chem. Phys. Lett. 211 367-73... [Pg.1997]

Nelson K A 1994 Coherent control optics, molecules, and materials Ultrafast Phenomena /X ed P F Barbara, W H Knox, G A Mourou and A H Zewail (Berlin Springer) pp 47... [Pg.2002]

Ultrafast TRCD has also been measured in chemical systems by incoriDorating a PEM into the probe beam optics of a picosecond laser pump-probe absorjDtion apparatus [35]. The PEM resonant frequency is very low (1 kHz) in these experiments, compared with the characteristic frequencies of ultrafast processes and so does not interfere with the detection of ultrafast CD changes. [Pg.2966]

A comprehensive review of fast and ultrafast time-resolved optical techniques. [Pg.2970]

Schematic diagrams of modem experimental apparatus used for IR pump-probe by Payer and co-workers [50] and for IR-Raman experiments by Dlott and co-workers [39] are shown in figure C3.5.3. Ultrafast mid-IR pulse generation by optical parametric amplification (OPA) [71] will not discussed here. Single-colour IR pump-probe or vibrational echo experiments have been perfonned with OP As or free-electron lasers. Free-electron lasers use... Schematic diagrams of modem experimental apparatus used for IR pump-probe by Payer and co-workers [50] and for IR-Raman experiments by Dlott and co-workers [39] are shown in figure C3.5.3. Ultrafast mid-IR pulse generation by optical parametric amplification (OPA) [71] will not discussed here. Single-colour IR pump-probe or vibrational echo experiments have been perfonned with OP As or free-electron lasers. Free-electron lasers use...
The chapter is organized as follows in Section 8.2 a brief overview of ultrafast optical dynamics in polymers is given in Section 8.3 we present m-LPPP and give a summary of optical properties in Section 8.4 the laser source and the measuring techniques are described in Section 8.5 we discuss the fundamental photoexcitations of m-LPPP Section 8.6 is dedicated to radiative recombination under several excitation conditions and describes in some detail amplified spontaneous emission (ASE) Section 8.7 discusses the charge generation process and the photoexcitation dynamics in the presence of an external electric field conclusions are reported in the last section. [Pg.445]

An important point is that these advances have been complemented by the concomitant development of innovative pulse-characterisation procedures such that all the features of femtosecond optical pulses - their energy, shape, duration and phase - can be subject to quantitative in situ scrutiny during the course of experiments. Taken together, these resources enable femtosecond lasers to be applied to a whole range of ultrafast processes, from the various stages of plasma formation and nuclear fusion, through molecular fragmentation and collision processes to the crucial, individual events of photosynthesis. [Pg.7]

Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule. Figure 1.3. Real-time femtosecond spectroscopy of molecules can be described in terms of optical transitions excited by ultrafast laser pulses between potential energy curves which indicate how different energy states of a molecule vary with interatomic distances. The example shown here is for the dissociation of iodine bromide (IBr). An initial pump laser excites a vertical transition from the potential curve of the lowest (ground) electronic state Vg to an excited state Vj. The fragmentation of IBr to form I + Br is described by quantum theory in terms of a wavepacket which either oscillates between the extremes of or crosses over onto the steeply repulsive potential V[ leading to dissociation, as indicated by the two arrows. These motions are monitored in the time domain by simultaneous absorption of two probe-pulse photons which, in this case, ionise the dissociating molecule.
Since there are a large number of different experimental laser and detection systems that can be used for time-resolved resonance Raman experiments, we shall only focus our attention here on two common types of methods that are typically used to investigate chemical reactions. We shall first describe typical nanosecond TR spectroscopy instrumentation that can obtain spectra of intermediates from several nanoseconds to millisecond time scales by employing electronic control of the pnmp and probe laser systems to vary the time-delay between the pnmp and probe pnlses. We then describe typical ultrafast TR spectroscopy instrumentation that can be used to examine intermediates from the picosecond to several nanosecond time scales by controlling the optical path length difference between the pump and probe laser pulses. In some reaction systems, it is useful to utilize both types of laser systems to study the chemical reaction and intermediates of interest from the picosecond to the microsecond or millisecond time-scales. [Pg.129]

The characterization of the laser pulse widths can be done with commercial autocorrelators or by a variety of other methods that can be found in the ultrafast laser literature. " For example, we have found it convenient to find time zero delay between the pump and probe laser beams in picosecond TR experiments by using fluorescence depletion of trans-stilbene. In this method, the time zero was ascertained by varying the optical delay between the pump and probe beams to a position where the depletion of the stilbene fluorescence was halfway to the maximum fluorescence depletion by the probe laser. The accuracy of the time zero measurement was estimated to be +0.5ps for 1.5ps laser pulses. A typical cross correlation time between the pump and probe pulses can also be measured by the fluorescence depletion method. [Pg.134]

Ohta, K., M. Yang, and G. R. Fleming. 2001. Ultrafast exciton dynamics of J-aggregates in room temperature solution studied by third-order nonlinear optical spectroscopy and numerical simulations based on exciton theory. J. Chem. Phys. 115 7609-7621. [Pg.156]

The discussion in this chapter is limited to cyanine-like NIR conjugated molecules, and further, is limited to discussing their two-photon absorption spectra with little emphasis on their excited state absorption properties. In principle, if the quantum mechanical states are known, the ultrafast nonlinear refraction may also be determined, but that is outside the scope of this chapter. The extent to which the results discussed here can be transferred to describe the nonlinear optical properties of other classes of molecules is debatable, but there are certain results that are clear. Designing molecules with large transition dipole moments that take advantage of intermediate state resonance and double resonance enhancements are definitely important approaches to obtain large two-photon absorption cross sections. [Pg.142]

Grant, D. M., Elson, D. S., Schimpf, D., Dunsby, C., Requejo-Isidro, J., Auksorius, E., Munro, I., Neil, M. A. A., French, P. M. W. Nye, E., Stamp, G. and Courtney, P. (2005). Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source. Opt. Lett. 30, 3353-5. [Pg.178]


See other pages where Optical ultrafast is mentioned: [Pg.424]    [Pg.424]    [Pg.1248]    [Pg.1249]    [Pg.1249]    [Pg.1264]    [Pg.1297]    [Pg.1298]    [Pg.1968]    [Pg.1973]    [Pg.2966]    [Pg.3029]    [Pg.399]    [Pg.18]    [Pg.138]    [Pg.140]    [Pg.131]    [Pg.131]    [Pg.136]    [Pg.353]    [Pg.2]    [Pg.6]    [Pg.16]    [Pg.183]    [Pg.289]    [Pg.40]    [Pg.42]    [Pg.45]    [Pg.134]    [Pg.176]    [Pg.251]   
See also in sourсe #XX -- [ Pg.445 ]




SEARCH



Ultrafast

© 2024 chempedia.info